A superior composite gel polymer electrolyte of Li7La3Zr2O12- poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries

2018 ◽  
Vol 102 ◽  
pp. 412-417 ◽  
Author(s):  
Y.F. Liang ◽  
S.J. Deng ◽  
Y. Xia ◽  
X.L. Wang ◽  
X.H. Xia ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Donghuang Wang ◽  
Dan Cai ◽  
Yu Zhong ◽  
Zhao Jiang ◽  
Shengzhao Zhang ◽  
...  

Developing high-quality solid-state electrolytes is important for producing next-generation safe and stable solid-state lithium-ion batteries. Herein, a three-dimensional highly porous polymer electrolyte based on poly (vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) with Li6.4La3Zr1.4Ta0.6O12 (LLZTO) nanoparticle fillers (PVDF-HFP-LLZTO) is prepared using the electrospinning technique. The PVDF-HFP-LLZTO gel polymer electrolyte possesses a high ionic conductivity of 9.44 × 10–4 S cm−1 and a Li-ion transference number of 0.66, which can be ascribed that the 3D hierarchical nanostructure with abundant porosity promotes the liquid electrolyte uptake and wetting, and LLZTO nanoparticles fillers decrease the crystallinity of PVDF-HFP. Thus, the solid-state lithium battery with LiFePO4 cathode, PVDF-HFP-LLZTO electrolyte, and Li metal anode exhibits enhanced electrochemical performance with improved cycling stability.


Sign in / Sign up

Export Citation Format

Share Document