electrospinning technique
Recently Published Documents


TOTAL DOCUMENTS

893
(FIVE YEARS 376)

H-INDEX

46
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Svetlana Butylina ◽  
Krista Koljonen ◽  
Salla Hiltunen ◽  
Katri Laatikainen

Abstract Valorisation of bio-based materials derived from agricultural and industrial side-streams or waste-streams is a basis of circular economy. However, the success of it depends on the full understanding of materials and finding their optimal way of processing. Barley husk is a side-stream waste material derived from the starch and ethanol production. This study is focused on the processability of the arabinoxylan extracted from barley husk using the electrospinning technique to produce thin xylan-poly(vinyl alcohol) fibers. As a comparison, lignin-free xylan of beech wood was used. The properties of spinning solutions and resulting nanofibrous mats were assessed by using rheological measurements, FTIR spectroscopy, scanning electron microscopy and contact angle measurements. It was found that solubility plays a crucial role in the spinnability of xylan extracts. Decrease in viscosity of arabinoxylan achieved by decreasing its concentration was found to improve the jet stability but at the same time, to reduce the diameter of spun fibre. Hydrophilicity of nanofibrous mats were strongly affected by the type of xylan and solvent used.


2022 ◽  
Author(s):  
Saeed Hejabri kandeh ◽  
Shima Amini ◽  
Homeira Ebrahimzadeh

Herein, a novel composite of poly(vinyl alcohol) (PVA)/citric acid (CA)/ chitosan (CS)/ aloe vera gel (AV) was fabricated via the electrospinning technique followed by a thermal treatment. The resultant composite...


2022 ◽  
Author(s):  
Xiaoyan Wang ◽  
Xiaona Hu ◽  
Shiqing Li ◽  
Wenhui Shi ◽  
Shujing Li ◽  
...  

The sustained-release antimicrobial nanofibers (PVA-Lut-IC-NF) were prepared by incorporating luteolin-hydroxypropyl-β-cyclodextrin inclusion complex (Lut-IC) into polyvinyl alcohol (PVA) via electrospinning technique. PVA-Lut-IC-NF has shown the excellent water-solubility and thermal stability. The...


Author(s):  
Jun Li ◽  
Linkang Li ◽  
Qi Chen ◽  
Wenqing Zhu ◽  
Jianhua Zhang

The development of a high-performance acetone gas sensor for detecting low concentrations of acetone gas is still a key issue. Here, we propose the green-solution-processed electrospinning technique to construct Nd-doped...


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Zeman Liu ◽  
Yiqi Wang ◽  
Fei Guo

Fibrous membranes with a nonwoven random structure and a quasi-parallel fibrous structure can be fabricated by the electrospinning technique. The membranes with different structures exhibited different behaviors to a hydraulic flow passing through the membranes. This work presents the effects of the fiber arrangement, fiber diameter, and deformations of the fibers on the hydraulic permeability. The results showed that the hydraulic flow can generate an extrusion pressure which affects the porosity and pore structure of the fibrous membranes. The quasi-parallel fibrous membranes and nonwoven membranes exhibited similar variation tendencies to the change of the experimental variables. However, the quasi-parallel fibrous membranes exhibited a higher sensibility to the change of the hydraulic flow rate. The hydraulic permeability of the quasi-parallel fibrous membranes was further analyzed with packing state models in this work.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Zhen Miao ◽  
Xiaohong Chen ◽  
Honglei Zhou ◽  
Ping Liu ◽  
Shaoli Fu ◽  
...  

A unique self-standing membrane composed of hierarchical thermoplastic polyurethane (TPU)/polyacrylonitrile (PAN) fibers is prepared by the electrospinning technique, followed by a simple dip-coating process. Fe3O4 nanoparticles are uniformly anchored on TPU/PAN fibers during the electrospinning process, enabling the membrane to achieve effective electromagnetic interference shielding (EMI SE) performance. Such a hybrid membrane has a high magnetization of 18.9 emu/g. When MXene (Ti3C2Tx) layers are further loaded on the TPU/PAN/Fe3O4NPs hybrid membrane, its EMI SE performance in the X band can exceed 30 dB due to the hydrogen bonds generated between the macromolecular chain of PAN and the functional group (Tx) on the surface of MXene. Simultaneously, the interfacial attraction between MXene and the TPU/PAN/Fe3O4NPs substrate is enhanced. The EMI SE mechanism of the hybrid membrane indicates that this film has great potential in the fields of wearable devices and flexible materials.


2021 ◽  
Vol 12 (1) ◽  
pp. 67
Author(s):  
Sofia M. Costa ◽  
Luísa Pacheco ◽  
Wilson Antunes ◽  
Ricardo Vieira ◽  
Nuno Bem ◽  
...  

Due to the prevalence of the COVID-19 pandemic, the demand for disposable facemasks has become a global issue. Unfortunately, the use of these products has negative effects on the environment, and therefore, the use of biodegradable materials is a powerful strategy to overcome this challenge. Aligned with this concept, in this work, biodegradable facemasks were developed using poly(ε-caprolactone) (PCL) polymer and cotton natural fibers. The filter layer was produced using an electrospinning technique, since electrospun membranes present remarkable characteristics for air filtration. The electrospun membranes were functionalized with different nanoparticles (NPs), including silver (Ag), titanium dioxide (TiO2) and magnesium oxide (MgO), in order to include new properties, namely antibacterial effect. The developed membranes were characterized by FESEM, EDS, ATR-FTIR, GSDR and TGA, which confirmed the successful impregnation of NPs onto PCL membranes. The antibacterial effect and filtration efficiency were assessed, with the PCL/MgO NPs membrane presenting better results, showing inhibition zone diameters of 25.3 and 13.5 mm against Gram-positive and Gram-negative bacteria, respectively, and filtration efficiency of 99.4%. Three facemask prototypes were developed, and their filtration efficiency, air permeability and thermal comfort were evaluated. Overall, this study demonstrates the potential of PCL/NPs electrospun membranes to act as an active and biodegradable filter layer in facemasks.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3454
Author(s):  
Li Zeng ◽  
Hongxue Xi ◽  
Xingang Liu ◽  
Chuhong Zhang

Silicon (Si) is expected to be a high-energy anode for the next generation of lithium-ion batteries (LIBs). However, the large volume change along with the severe capacity degradation during the cycling process is still a barrier for its practical application. Herein, we successfully construct flexible silicon/carbon nanofibers with a core–shell structure via a facile coaxial electrospinning technique. The resultant Si@C nanofibers (Si@C NFs) are composed of a hard carbon shell and the Si-embedded amorphous carbon core framework demonstrates an initial reversible capacity of 1162.8 mAh g−1 at 0.1 A g−1 with a retained capacity of 762.0 mAh g−1 after 100 cycles. In addition, flexible LIBs assembled with Si@C NFs were hardly impacted under an extreme bending state, illustrating excellent electrochemical performance. The impressive performances are attributed to the high electric conductivity and structural stability of the porous carbon fibers with a hierarchical porous structure, indicating that the novel Si@C NFs fabricated using this electrospinning technique have great potential for advanced flexible energy storage.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 986
Author(s):  
Ivan V. Lukiev ◽  
Ludmila S. Antipina ◽  
Semen I. Goreninskii ◽  
Tamara S. Tverdokhlebova ◽  
Dmitry V. Vasilchenko ◽  
...  

In the present study, wound healing ferroelectric membranes doped with zinc oxide nanoparticles were fabricated from vinylidene fluoride-tetrafluoroethylene copolymer and polyvinylpyrrolidone using the electrospinning technique. Five different ratios of vinylidene fluoride-tetrafluoroethylene to polyvinylpyrrolidone were used to control the properties of the membranes at a constant zinc oxide nanoparticle content. It was found that an increase of polyvinylpyrrolidone content leads to a decrease of the spinning solution conductivity and viscosity, causing a decrease of the average fiber diameter and reducing their strength and elongation. By means of X-ray diffraction and infrared spectroscopy, it was revealed that increased polyvinylpyrrolidone content leads to difficulty in crystallization of the vinylidene fluoride-tetrafluoroethylene copolymer in the ferroelectric β-phase in membranes. Changing the ratio of vinylidene fluoride-tetrafluoroethylene copolymer and polyvinylpyrrolidone with a constant content of zinc oxide nanoparticles is an effective approach to control the antibacterial properties of membranes towards Staphylococcus aureus. After carrying out in vivo experiments, we found that ferroelectric hybrid membranes, containing from five to ten mass percent of PVP, have the greatest wound-healing effect for the healing of purulent wounds.


Sign in / Sign up

Export Citation Format

Share Document