Study of effect of hydrostatic pressure on structural, electronic and magnetic properties of In0.75Mn0.25P using density functional theory

2020 ◽  
Vol 28 ◽  
pp. 1510-1513
Author(s):  
Kirandish Kaur ◽  
Suresh Sharma ◽  
Anita Rani ◽  
Sharnjeet Kaur
Author(s):  
Mohamed Helal ◽  
H. M. El-Sayed ◽  
Ahmed A Maarouf ◽  
Mohamed Fadlallah

Motivated by the successful preparation of two-dimensional transition metal dichalcogenides (2D- TMDs) nanomeshes in the last three years, we use density functional theory (DFT) to study the structural stability, mechanical,...


Author(s):  
Anderson Soares da Costa Azevêdo ◽  
Aldilene Saraiva-Souza ◽  
Vincent Meunier ◽  
Eduardo Costa Girão

Theoretical analysis based on density functional theory is used to describe the microscopic origins of emerging electronic and magnetic properties in quasi-1D nitrogen-doped graphene nanoribbon structures with chevron-like (or wiggly-edged)...


2019 ◽  
Vol 33 (5) ◽  
pp. 1507-1512 ◽  
Author(s):  
A. Azouaoui ◽  
M. El Haoua ◽  
S. Salmi ◽  
A. El Grini ◽  
N. Benzakour ◽  
...  

AbstractIn this paper, we have studied the structural, electronic, and magnetic properties of the cubic perovskite system Mn4N using the first principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GGA). The obtained data from DFT calculations are used as input data in Monte Carlo simulation with a mixed spin-5/2 and 1 Ising model to calculate the magnetic properties of this compound, such as the total, partial thermal magnetization, and the critical temperatures (TC). The obtained results show that Mn4N has a ferrimagnetic structure with two different sites of Mn in the lattice and presents a metallic behavior. The obtained TC is in good agreement with experimental results.


2017 ◽  
Vol 19 (23) ◽  
pp. 15021-15029 ◽  
Author(s):  
Yusheng Wang ◽  
Nahong Song ◽  
Min Jia ◽  
Dapeng Yang ◽  
Chikowore Panashe ◽  
...  

First principles calculations based on density functional theory were carried out to study the electronic and magnetic properties of C2N nanoribbons (C2NNRs).


RSC Advances ◽  
2015 ◽  
Vol 5 (42) ◽  
pp. 33407-33413 ◽  
Author(s):  
W. X. Zhang ◽  
C. He ◽  
T. Li ◽  
S. B. Gong

The structural, electronic and magnetic properties can be modulated by changing the SW LD locations and axis tensile strain of 10-ZGNRs using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document