metal dichalcogenides
Recently Published Documents





Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 677
Jian Chen ◽  
Jiuxu Wang ◽  
Xin Li ◽  
Jin Chen ◽  
Feilong Yu ◽  

Benefiting from the inherent capacity for detecting longer wavelengths inaccessible to human eyes, infrared photodetectors have found numerous applications in both military and daily life, such as individual combat weapons, automatic driving sensors and night-vision devices. However, the imperfect material growth and incomplete device manufacturing impose an inevitable restriction on the further improvement of infrared photodetectors. The advent of artificial microstructures, especially metasurfaces, featuring with strong light field enhancement and multifunctional properties in manipulating the light–matter interactions on subwavelength scale, have promised great potential in overcoming the bottlenecks faced by conventional infrared detectors. Additionally, metasurfaces exhibit versatile and flexible integration with existing detection semiconductors. In this paper, we start with a review of conventionally bulky and recently emerging two-dimensional material-based infrared photodetectors, i.e., InGaAs, HgCdTe, graphene, transition metal dichalcogenides and black phosphorus devices. As to the challenges the detectors are facing, we further discuss the recent progress on the metasurfaces integrated on the photodetectors and demonstrate their role in improving device performance. All information provided in this paper aims to open a new way to boost high-performance infrared photodetectors.

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Dung Thi Vu ◽  
Nikolaos Matthaiakakis ◽  
Hikaru Saito ◽  
Takumi Sannomiya

Abstract Two-dimensional (2D) transition metal dichalcogenides (TMDCs), possessing unique exciton luminescence properties, have attracted significant attention for use in optical and electrical devices. TMDCs are also high refractive index materials that can strongly confine the electromagnetic field in nanoscale dimensions when patterned into nanostructures, thus resulting in complex light emission that includes exciton and dielectric resonances. Here, we use cathodoluminescence (CL) to experimentally visualize the emission modes of single molybdenum disulfide (MoS2) nanoflakes and to investigate luminescence enhancement due to dielectric resonances in nanoscale dimensions, by using a scanning transmission electron microscope. Specifically, we identify dielectric modes whose resonant wavelength is sensitive to the shape and size of the nanoflake, and exciton emission peaks whose energies are insensitive to the geometry of the flakes. Using a four-dimensional CL method and boundary element method simulations, we further theoretically and experimentally visualize the emission polarization and angular emission patterns, revealing the coupling of the exciton and dielectric resonant modes. Such nanoscopic observation provides a detailed understanding of the optical responses of MoS2 including modal couplings of excitons and dielectric resonances which play a crucial role in the development of energy conversion devices, single-photon emitters, and nanophotonic circuits with enhanced light-matter interactions.

2022 ◽  
Archana Yadav ◽  
Anil Kumar ◽  
Preeta Sharan ◽  
Kamakshi Manchikalapati ◽  
Srinivas Talabattula

Rinky Sha ◽  
Palash Chandra Maity ◽  
Umamaheswari Rajaji ◽  
Ting-Yu Liu ◽  
Tarun Kanti Bhattacharyya

Abstract Molybdenum diselenide (MoSe2), an in-organic analog of graphene, is considered a rising star in the family of transition-metal dichalcogenides (TMDs) because of its stable covalent Mo–Se bond, good catalytic properties, huge specific surface area, higher electrical, multivalent oxidation states of transition metal ions, and its ability to be intercalated with suitably-sized metal atoms or organic molecules to modify their physical properties with a distinguishing layered structure. It is being projected as the next-generation 2D layered nano-material for many energy storage-conversion applications. This review covers the properties, functionalization of MoSe2, and their applications in supercapacitors, discussing the current developments of MoSe2 and its nano-composites-based supercapacitors, providing emphasis to the capacitive performances which comprise of specific capacitance/ capacity, cyclic lifespan, energy density, power density, rate capability, and their practicality in the real environments. Fundamental charge-storage mechanisms are also discussed to provide better insight into how MoSe2 is ascribed to each supercapacitor. Wherever applicable, limitations of the existing approaches and future outlook are also described.

Inorganics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 11
Pradeep R. Varadwaj ◽  
Helder M. Marques ◽  
Arpita Varadwaj ◽  
Koichi Yamashita

An attempt was made, using computational methods, to understand whether the intermolecular interactions in the dimers of molybdenum dichalcogenides MoCh2 (Ch = chalcogen, element of group 16, especially S, Se and Te) and similar mixed-chalcogenide derivatives resemble the room temperature experimentally observed interactions in the interfacial regions of molybdenites and their other mixed-chalcogen derivatives. To this end, MP2(Full)/def2-TVZPPD level electronic structure calculations on nine dimer systems, including (MoCh2)2 and (MoChCh′2)2 (Ch, Ch′ = S, Se and Te), were carried out not only to demonstrate the energetic stability of these systems in the gas phase, but also to reproduce the intermolecular geometrical properties that resemble the interfacial geometries of 2D layered MoCh2 systems reported in the crystalline phase. Among the six DFT functionals (single and double hybrids) benchmarked against MP2(full), it was found that the double hybrid functional B2PLYPD3 has some ability to reproduce the intermolecular geometries and binding energies. The intermolecular geometries and binding energies of all nine dimers are discussed, together with the charge density topological aspects of the chemical bonding interactions that emerge from the application of the quantum theory of atoms in molecules (QTAIM), the isosurface topology of the reduced density gradient noncovalent index, interaction region indicator and independent gradient model (IGM) approaches. While the electrostatic surface potential model fails to explain the origin of the S···S interaction in the (MoS2)2 dimer, we show that the intermolecular bonding interactions in all nine dimers examined are a result of hyperconjugative charge transfer delocalizations between the lone-pair on (Ch/Ch′) and/or the π-orbitals of a Mo–Ch/Ch′ bond of one monomer and the dπ* anti-bonding orbitals of the same Mo–Ch/Ch′ bond in the second monomer during dimer formation, and vice versa. The HOMO–LUMO gaps calculated with the MN12-L functional were 0.9, 1.0, and 1.1 eV for MoTe2, MoSe2 and MoS2, respectively, which match very well with the solid-state theoretical (SCAN-rVV10)/experimental band gaps of 0.75/0.88, 0.90/1.09 and 0.93/1.23 eV of the corresponding systems, respectively. We observed that the gas phase dimers examined are perhaps prototypical for a basic understanding of the interfacial/inter-layer interactions in molybdenum-based dichalcogenides and their derivatives.

Yishu Wang ◽  
Xiaokun Zhai ◽  
Liefeng Feng ◽  
Tingge Gao

Abstract The neutral and interlayer exciton originates from intralayer and interlayer coupling, respectively. Unlike neutral exciton, the interlayer excitons at room temperature are hard to observe and manipulate due to instability. In this work, we show the photoluminescence of WS$_2$ and MoS$_2$ neutral exciton can be improved by oleic acid passivation, allowing trion peaks to be observed at room temperature. More importantly, a 3-fold increase in peak intensity of interlayer excitons is achieved, and the energy peak is blue-shifted 107 meV. Our work paves the way to investigate excitons in two-dimensional transition metal dichalcogenides monolayers and heterostructures at room temperature.

Sign in / Sign up

Export Citation Format

Share Document