Multi-Class classification of brain tumor images using data augmentation with deep neural network

Author(s):  
B. Srikanth ◽  
S. Venkata Suryanarayana
2021 ◽  
Vol 38 (4) ◽  
pp. 1171-1179
Author(s):  
Swaraja Kuraparthi ◽  
Madhavi K. Reddy ◽  
C.N. Sujatha ◽  
Himabindu Valiveti ◽  
Chaitanya Duggineni ◽  
...  

Manual tumor diagnosis from magnetic resonance images (MRIs) is a time-consuming procedure that may lead to human errors and may lead to false detection and classification of the tumor type. Therefore, to automatize the complex medical processes, a deep learning framework is proposed for brain tumor classification to ease the task of doctors for medical diagnosis. Publicly available datasets such as Kaggle and Brats are used for the analysis of brain images. The proposed model is implemented on three pre-trained Deep Convolution Neural Network architectures (DCNN) such as AlexNet, VGG16, and ResNet50. These architectures are the transfer learning methods used to extract the features from the pre-trained DCNN architecture, and the extracted features are classified by using the Support Vector Machine (SVM) classifier. Data augmentation methods are applied on Magnetic Resonance images (MRI) to avoid the network from overfitting. The proposed methodology achieves an overall accuracy of 98.28% and 97.87% without data augmentation and 99.0% and 98.86% with data augmentation for Kaggle and Brat's datasets, respectively. The Area Under Curve (AUC) for Receiver Operator Characteristic (ROC) is 0.9978 and 0.9850 for the same datasets. The result shows that ResNet50 performs best in the classification of brain tumors when compared with the other two networks.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 69215-69225 ◽  
Author(s):  
Hossam H. Sultan ◽  
Nancy M. Salem ◽  
Walid Al-Atabany

Author(s):  
David T. Wang ◽  
Brady Williamson ◽  
Thomas Eluvathingal ◽  
Bruce Mahoney ◽  
Jennifer Scheler

Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


2020 ◽  
Vol 14 ◽  
Author(s):  
Lahari Tipirneni ◽  
Rizwan Patan

Abstract:: Millions of deaths all over the world are caused by breast cancer every year. It has become the most common type of cancer in women. Early detection will help in better prognosis and increases the chance of survival. Automating the classification using Computer-Aided Diagnosis (CAD) systems can make the diagnosis less prone to errors. Multi class classification and Binary classification of breast cancer is a challenging problem. Convolutional neural network architectures extract specific feature descriptors from images, which cannot represent different types of breast cancer. This leads to false positives in classification, which is undesirable in disease diagnosis. The current paper presents an ensemble Convolutional neural network for multi class classification and Binary classification of breast cancer. The feature descriptors from each network are combined to produce the final classification. In this paper, histopathological images are taken from publicly available BreakHis dataset and classified between 8 classes. The proposed ensemble model can perform better when compared to the methods proposed in the literature. The results showed that the proposed model could be a viable approach for breast cancer classification.


Sign in / Sign up

Export Citation Format

Share Document