electrocardiogram signals
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 104)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 73 ◽  
pp. 103469
Author(s):  
Aditya Chandrasekar ◽  
Dhanush D. Shekar ◽  
Abhishek C. Hiremath ◽  
Krishnan Chemmangat

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 13
Author(s):  
Tamara Škorić

The development of smart cars with e-health services allows monitoring of the health condition of the driver. Driver comfort is preserved by the use of capacitive electrodes, but the recorded signal is characterized by large artifacts. This paper proposes a method for reducing artifacts from the ECG signal recorded by capacitive electrodes (cECG) in moving subjects. Two dominant artifact types are coarse and slow-changing artifacts. Slow-changing artifacts removal by classical filtering is not feasible as the spectral bands of artifacts and cECG overlap, mostly in the band from 0.5 to 15 Hz. We developed a method for artifact removal, based on estimating the fluctuation around linear trend, for both artifact types, including a condition for determining the presence of coarse artifacts. The method was validated on cECG recorded while driving, with the artifacts predominantly due to the movements, as well as on cECG recorded while lying, where the movements were performed according to a predefined protocol. The proposed method eliminates 96% to 100% of the coarse artifacts, while the slow-changing artifacts are completely reduced for the recorded cECG signals larger than 0.3 V. The obtained results are in accordance with the opinion of medical experts. The method is intended for reliable extraction of cardiovascular parameters to monitor driver fatigue status.


Author(s):  
Achmad Rizal ◽  
Usman Rizki Iman ◽  
Hilman Fauzi

One of sleep-disordered breathing (SDB) form is sleep apnea, commonly known as snoring during sleep, based on various complex mechanisms and predisposing factors. Sleep apnea is also related to various medical problems. It impacts morbidity and mortality so that it becomes a burden on public health services. Its detection needs to be done correctly through electrocardiogram signals to detect sleep apnea more quickly and precisely. This study was conducted to detect sleep apnea based on electrocardiogram signals using multi-scale entropy analysis. Multi-scale entropy (MSE) is used in a finite length of time series for measuring the complexity of the signal. MSE can be applied to both physical and physiological data sets and. In this paper we used MSE to detect Sleep Apnea on electrocardiogram (ECG) signals. MSE was applied two classes of ECG data, normal ECG signals, and apnea ECG signals. In this paper, classification and verification were carried out using the Support Vector Machine (SVM) and N-fold cross-validation (N-fold CV). From the experimental results, the highest accuracy was 85.6% using 5-fold CV and MSE scale of 10. The result shows that the system model that can detect sleep using the multi-scale entropy method


2021 ◽  
Vol 8 (12) ◽  
pp. 193
Author(s):  
Andrea Bizzego ◽  
Giulio Gabrieli ◽  
Michelle Jin Yee Neoh ◽  
Gianluca Esposito

Deep learning (DL) has greatly contributed to bioelectric signal processing, in particular to extract physiological markers. However, the efficacy and applicability of the results proposed in the literature is often constrained to the population represented by the data used to train the models. In this study, we investigate the issues related to applying a DL model on heterogeneous datasets. In particular, by focusing on heart beat detection from electrocardiogram signals (ECG), we show that the performance of a model trained on data from healthy subjects decreases when applied to patients with cardiac conditions and to signals collected with different devices. We then evaluate the use of transfer learning (TL) to adapt the model to the different datasets. In particular, we show that the classification performance is improved, even with datasets with a small sample size. These results suggest that a greater effort should be made towards the generalizability of DL models applied on bioelectric signals, in particular, by retrieving more representative datasets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lucas Shinoda ◽  
Laís Damasceno ◽  
Leandro Freitas ◽  
Ruy Campos ◽  
Sergio Cravo ◽  
...  

A classic method to evaluate autonomic dysfunction is through the evaluation of heart rate variability (HRV). HRV provides a series of coefficients, such as Standard Deviation of n-n intervals (SDNN) and Root Mean Square of Successive Differences (RMSSD), which have well-established physiological associations. However, using only electrocardiogram (ECG) signals, it is difficult to identify proper autonomic activity, and the standard techniques are not sensitive and robust enough to distinguish pure autonomic modulation in heart dynamics from cardiac dysfunctions. In this proof-of-concept study we propose the use of Poincaré mapping and Recurrence Quantification Analysis (RQA) to identify and characterize stochasticity and chaoticity dynamics in ECG recordings. By applying these non-linear techniques in the ECG signals recorded from a set of Parkinson’s disease (PD) animal model 6-hydroxydopamine (6-OHDA), we showed that they present less variability in long time epochs and more stochasticity in short-time epochs, in their autonomic dynamics, when compared with those of the sham group. These results suggest that PD animal models present more “rigid heart rate” associated with “trembling ECG” and bradycardia, which are direct expressions of Parkinsonian symptoms. We also compared the RQA factors calculated from the ECG of animal models using four computational ECG signals under different noise and autonomic modulatory conditions, emulating the main ECG features of atrial fibrillation and QT-long syndrome.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Mohammad Alsaffar ◽  
Abdullah Alshammari ◽  
Gharbi Alshammari ◽  
Saud Aljaloud ◽  
Tariq S. Almurayziq ◽  
...  

Heart disease is the leading cause of death from chronic diseases in the developing countries. The difficulty of making an accurate and timely diagnosis is exacerbated by a lack of resources and professionals in some areas, which contributes to this reality. Medical professionals may benefit from technological advancements that aid in the accurate diagnosis of patients. In light of these findings, a hybrid diagnostic tool has been developed that combines several computational intelligence (machine learning) techniques capable of analyzing clinical histories and images of electrocardiogram signals and indicating whether or not the patient has ischemic heart disease with up to 97.01% accuracy. Working with medical experts and a database containing clinical data on approximately 1020 patients and their diagnoses was required for this project. Both were put to use. A picture database containing 92 images of electrocardiogram signals was also used in this project for the analysis of the Artificial Neural Network. After extensive research and testing by the medical community, which supported the project and provided positive feedback, a successful tool was developed. This demonstrated the tool’s effectiveness.


2021 ◽  
Author(s):  
Ashish Khanna ◽  
Pandiaraj Selvaraj ◽  
Deepak Gupta ◽  
Tariq Hussain Sheikh ◽  
Piyush Kumar Pareek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document