scholarly journals The primitive equations as the small aspect ratio limit of the Navier–Stokes equations: Rigorous justification of the hydrostatic approximation

2019 ◽  
Vol 124 ◽  
pp. 30-58 ◽  
Author(s):  
Jinkai Li ◽  
Edriss S. Titi
Nonlinearity ◽  
2020 ◽  
Vol 33 (12) ◽  
pp. 6502-6516
Author(s):  
Ken Furukawa ◽  
Yoshikazu Giga ◽  
Matthias Hieber ◽  
Amru Hussein ◽  
Takahito Kashiwabara ◽  
...  

1974 ◽  
Vol 65 (2) ◽  
pp. 231-246 ◽  
Author(s):  
D. E. Cormack ◽  
L. G. Leal ◽  
J. H. Seinfeld

Numerical solutions of the full Navier-Stokes equations are obtained for the problem of natural convection in closed cavities of small aspect ratio with differentially heated end walls. These solutions cover the parameter range Pr = 6·983, 10 ≤ Gr 2 × 104 and 0·05 [les ] A [les ] 1. A comparison with the asymptotic theory of part 1 shows excellent agreement between the analytical and numerical solutions provided that A [lsim ] 0·1 and Gr2A3Pr2 [lsim ] 105. In addition, the numerical solutions demonstrate the transition between the shallow-cavity limit of part 1 and the boundary-layer limit; A fixed, Gr → ∞.


2005 ◽  
Author(s):  
Xavier Nicolas ◽  
Shihe Xin

Based on Goda’s algorithm and second-order central finite differences, a very efficient vectorized code is tailored to solve 3D incompressible Navier-Stokes equations for mixed convection flows in high streamwise aspect ratio channels. The code takes advantage of incremental factorization method of ADI type, spectral decomposition of the ID Laplace operators and TDMA algorithm. It is validated through experiments of various Poiseuille-Rayleigh-Be´nard flows with steady longitudinal and unsteady transverse rolls.


2015 ◽  
Vol 782 ◽  
pp. 63-98 ◽  
Author(s):  
Francisco Marques ◽  
Juan M. Lopez

Recent experiments using a rapidly rotating and precessing cylinder have shown that for specific values of the precession rate, aspect ratio and tilt angle, sudden catastrophic transitions to turbulence occur. Even if the precessional forcing is not too strong, there can be intermittent recurrences between a laminar state and small-scale chaotic flow. The inviscid linearized Navier–Stokes equations have inertial-wave solutions called Kelvin eigenmodes. The precession forces the flow to have azimuthal wavenumber $m=1$ (spin-over mode). Depending on the cylinder aspect ratio and on the ratio of the rotating and precessing frequencies, additional Kelvin modes can be in resonance with the spin-over mode. This resonant flow would grow unbounded if not for the presence of viscous and nonlinear effects. In practice, one observes a rapid transition to turbulence, and the precise nature of the transition is not entirely clear. When both the precessional forcing and viscous effects are small, weakly nonlinear models and experimental observations suggest that triadic resonance is at play. Here, we used direct numerical simulations of the full Navier–Stokes equations in a narrow region of parameter space where triadic resonance has been previously predicted from a weakly nonlinear model and observed experimentally. The detailed parametric studies enabled by the numerics reveal the complex dynamics associated with weak precessional forcing, involving symmetry-breaking, hysteresis and heteroclinic cycles between states that are quasiperiodic, with two or three independent frequencies. The detailed analysis of these states leads to associations of physical mechanisms with the various time scales involved.


Sign in / Sign up

Export Citation Format

Share Document