An adaptive anti-noise network with recursive attention mechanism for gear fault diagnosis in real-industrial noise environment condition

Measurement ◽  
2021 ◽  
pp. 110169
Author(s):  
Yong Yao ◽  
Gui Gui ◽  
Suixian Yang ◽  
Sen Zhang
Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1233 ◽  
Author(s):  
Yong Yao ◽  
Sen Zhang ◽  
Suixian Yang ◽  
Gui Gui

The gear fault signal under different working conditions is non-linear and non-stationary, which makes it difficult to distinguish faulty signals from normal signals. Currently, gear fault diagnosis under different working conditions is mainly based on vibration signals. However, vibration signal acquisition is limited by its requirement for contact measurement, while vibration signal analysis methods relies heavily on diagnostic expertise and prior knowledge of signal processing technology. To solve this problem, a novel acoustic-based diagnosis (ABD) method for gear fault diagnosis under different working conditions based on a multi-scale convolutional learning structure and attention mechanism is proposed in this paper. The multi-scale convolutional learning structure was designed to automatically mine multiple scale features using different filter banks from raw acoustic signals. Subsequently, the novel attention mechanism, which was based on a multi-scale convolutional learning structure, was established to adaptively allow the multi-scale network to focus on relevant fault pattern information under different working conditions. Finally, a stacked convolutional neural network (CNN) model was proposed to detect the fault mode of gears. The experimental results show that our method achieved much better performance in acoustic based gear fault diagnosis under different working conditions compared with a standard CNN model (without an attention mechanism), an end-to-end CNN model based on time and frequency domain signals, and other traditional fault diagnosis methods involving feature engineering.


2014 ◽  
Vol 1014 ◽  
pp. 510-515 ◽  
Author(s):  
You Cai Xu ◽  
Xin Shi Li ◽  
Ran Tao ◽  
Shu Guo ◽  
Min Gou ◽  
...  

The time-domain energy message conveyed by vibration signals of different gear fault are different, so a method based on local mean decomposition (LMD) and variable predictive model-based class discriminate (VPMCD) is proposed to diagnose gear fault model. The vibration signal of gear which is the research object in this paper is decomposed into a series of product functions (PF) by LMD method. Then a further analysis is to select the PF components which contain main fault information of gear, the energy feature parameters of the selected PF components are used to form a fault feature vector. The variable predictive model-based class discriminate is a new multivariate classification approach for pattern recognition, through taking fully advantages of the fault feature vector. Finally, gear fault diagnosis is distinguished into normal state, inner race fault and outer race fault. The results show that LMD method can decompose a complex non-stationary signal into a number of PF components whose frequency is from high to low. And the method based on LMD and VPMCD has a high fault recognition function by analyzing the fault feature vector of PF.


2021 ◽  
Author(s):  
Yasong Li ◽  
Zheng Zhou ◽  
Chuang Sun ◽  
Ruqiang Yan ◽  
Xuefeng Chen

2013 ◽  
Vol 333-335 ◽  
pp. 1684-1687
Author(s):  
Bin Wu ◽  
Song He Zhang ◽  
Yue Gang Luo ◽  
Shan Ping Yu

Due to the feature and the forms of motion of the gears, the vibration signal of the gear is mainly the frequency modulation, amplitude modulation, or hybrid modulation signal corresponding to the gear-mesh frequency and its double frequency signal. When faults arise on the gears, the number and shape of the modulation sideband will be changed. The structures and forms of the FM composition differ according to the type of faults. According to the above mentioned characteristic, this essay raises a method to disassemble the gear vibrate signal, points out the formulas to build up characteristic vector, on that basis, the essay raised a gear fault diagnosis method based on EMD and Hidden Markov Model (HMM), this method can identify the working condition of the normal gears, snaggletooth gears, and pitting gears.


Sign in / Sign up

Export Citation Format

Share Document