An investigation to revitalize the separation performance of hollow fibers with a thin mixed matrix composite skin for gas separation

2006 ◽  
Vol 276 (1-2) ◽  
pp. 113-125 ◽  
Author(s):  
L JIANG ◽  
T CHUNG ◽  
S KULPRATHIPANJA
Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 194
Author(s):  
Xiuxiu Ren ◽  
Masakoto Kanezashi ◽  
Meng Guo ◽  
Rong Xu ◽  
Jing Zhong ◽  
...  

A new polyhedral oligomeric silsesquioxane (POSS) designed with eight –(CH2)3–NH–(CH2)2–NH2 groups (PNEN) at its apexes was used as nanocomposite uploading into 1,2-bis(triethoxysilyl)ethane (BTESE)-derived organosilica to prepare mixed matrix membranes (MMMs) for gas separation. The mixtures of BTESE-PNEN were uniform with particle size of around 31 nm, which is larger than that of pure BTESE sols. The characterization of thermogravimetric (TG) and gas permeance indicates good thermal stability. A similar amine-contained material of 3-aminopropyltriethoxysilane (APTES) was doped into BTESE to prepare hybrid membranes through a copolymerized strategy as comparison. The pore size of the BTESE-PNEN membrane evaluated through a modified gas-translation model was larger than that of the BTESE-APTES hybrid membrane at the same concentration of additions, which resulted in different separation performance. The low values of Ep(CO2)-Ep(N2) and Ep(N2) for the BTESE-PNEN membrane at a low concentration of PNEN were close to those of copolymerized BTESE-APTES-related hybrid membranes, which illustrates a potential CO2 separation performance by using a mixed matrix membrane strategy with multiple amine POSS as particles.


2019 ◽  
Vol 589 ◽  
pp. 117246 ◽  
Author(s):  
Yonghong Wang ◽  
Long Li ◽  
Xinru Zhang ◽  
Jinping Li ◽  
Chengcen Liu ◽  
...  

2011 ◽  
Vol 364 ◽  
pp. 272-277 ◽  
Author(s):  
S.M. Sanip ◽  
A.F. Ismail ◽  
P.S. Goh ◽  
M.N.A. Norrdin ◽  
T. Soga ◽  
...  

Mixed matrix membranes (MMM) combine useful molecular sieving properties of inorganic fillers with the desirable mechanical and processing properties of polymers. The current trend in polymeric membranes is the incorporation of filler-like nanoparticles to improve the separation performance. Most MMM have shown higher gas permeabilities and improved gas selectivities compared to the corresponding pure polymer membranes. Carbon nanotubes based mixed matrix membrane was prepared by the solution casting method in which the functionalized multiwalled carbon nanotubes (f-MWNTs) were embedded into the polyimide membrane and the resulting membranes were characterized. The effect of nominal MWNTs content between 0.5 and 1.0 wt% on the gas separation properties were looked into. The as-prepared membranes were characterized for their morphology using field emission scanning electron microscopy (FESEM) and Transmission Electron Microscopy (TEM). The morphologies of the MMM also indicated that at 0.7 % loading of f-MWNTs, the structures of the MMM showed uniform finger-like structures which have facilitated the fast gas transport through the polymer matrix. It may also be concluded that addition of open ended and shortened MWNTs to the polymer matrix can improve its permeability by increasing diffusivity through the MWNTs smooth cavity.


Sign in / Sign up

Export Citation Format

Share Document