The best constant for the Sobolev trace embedding from into

2004 ◽  
Vol 59 (7) ◽  
pp. 1125-1145 ◽  
Author(s):  
F. Andreu ◽  
J.M. Mazón ◽  
J.D. Rossi
2008 ◽  
Vol 51 (1) ◽  
pp. 140-145 ◽  
Author(s):  
Julio D. Rossi

AbstractIn this paper we study the best constant of the Sobolev trace embedding H1(Ω) → L2(∂Ω), where Ω is a bounded smooth domain in ℝN. We find a formula for the first variation of the best constant with respect to the domain. As a consequence, we prove that the ball is a critical domain when we consider deformations that preserve volume.


2008 ◽  
Vol 10 (05) ◽  
pp. 633-650 ◽  
Author(s):  
JULIÁN FERNÁNDEZ BONDER ◽  
JULIO D. ROSSI ◽  
CAROLA-BIBIANE SCHÖNLIEB

Let Ω ⊂ ℝNbe a bounded, smooth domain. We deal with the best constant of the Sobolev trace embedding W1,p(Ω) ↪ Lq(∂Ω) for functions that vanish in a subset A ⊂ Ω, which we call the hole, i.e. we deal with the minimization problem [Formula: see text] for functions that verify u|A= 0. It is known that there exists an optimal hole that minimizes the best constant SAamong subsets of Ω of the prescribed volume.In this paper, we look for optimal holes and extremals in thin domains. We find a limit problem (when the thickness of the domain goes to zero), that is a standard Neumann eigenvalue problem with weights and prove that when the domain is contracted to a segment, it is better to concentrate the hole on one side of the domain.


2007 ◽  
Vol 49 (2) ◽  
pp. 213-230 ◽  
Author(s):  
J. Fernandezbonder ◽  
R. Orive ◽  
J. D. Rossi

AbstractIn this paper we study the best constant in the Sobolev trace embedding H1 (Ω) →Lq(∂Ω) in a bounded smooth domain for 1 < q < 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved functions vanish. There exists a critical size of the holes for which the limit problem has an extra term. For sizes larger than critical the best trace constant diverges to infinity and for sizes smaller than critical it converges to the best constant in the domain without holes. Also, we study the problem with the holes located on the boundary of the domain. In this case another critical exists and its extra term appears on the boundary.


2009 ◽  
Vol 51 (3) ◽  
pp. 619-630
Author(s):  
JULIÁN FERNÁNDEZ BONDER ◽  
RAFAEL ORIVE ◽  
JULIO D. ROSSI

AbstractIn this paper we study homogenisation problems for Sobolev trace embedding H1(Ω) ↪ Lq(∂Ω) in a bounded smooth domain. When q = 2 this leads to a Steklov-like eigenvalue problem. We deal with the best constant of the Sobolev trace embedding in rapidly oscillating periodic media, and we consider H1 and Lq spaces with weights that are periodic in space. We find that extremals for these embeddings converge to a solution of a homogenised limit problem, and the best trace constant converges to a homogenised best trace constant. Our results are in fact more general; we can also consider general operators of the form aɛ(x, ∇u) with non-linear Neumann boundary conditions. In particular, we can deal with the embedding W1,p(Ω) ↪ Lq(∂Ω).


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Bing He ◽  
Yong Hong ◽  
Zhen Li

AbstractFor the Hilbert type multiple integral inequality $$ \int _{\mathbb{R}_{+}^{n}} \int _{\mathbb{R}_{+}^{m}} K\bigl( \Vert x \Vert _{m,\rho }, \Vert y \Vert _{n, \rho }\bigr) f(x)g(y) \,\mathrm{d} x \,\mathrm{d} y \leq M \Vert f \Vert _{p, \alpha } \Vert g \Vert _{q, \beta } $$ ∫ R + n ∫ R + m K ( ∥ x ∥ m , ρ , ∥ y ∥ n , ρ ) f ( x ) g ( y ) d x d y ≤ M ∥ f ∥ p , α ∥ g ∥ q , β with a nonhomogeneous kernel $K(\|x\|_{m, \rho }, \|y\|_{n, \rho })=G(\|x\|^{\lambda _{1}}_{m, \rho }/ \|y\|^{\lambda _{2}}_{n, \rho })$ K ( ∥ x ∥ m , ρ , ∥ y ∥ n , ρ ) = G ( ∥ x ∥ m , ρ λ 1 / ∥ y ∥ n , ρ λ 2 ) ($\lambda _{1}\lambda _{2}> 0$ λ 1 λ 2 > 0 ), in this paper, by using the weight function method, necessary and sufficient conditions that parameters p, q, $\lambda _{1}$ λ 1 , $\lambda _{2}$ λ 2 , α, β, m, and n should satisfy to make the inequality hold for some constant M are established, and the expression formula of the best constant factor is also obtained. Finally, their applications in operator boundedness and operator norm are also considered, and the norms of several integral operators are discussed.


2021 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Alex Garivaltis

This note provides a neat and enjoyable expansion and application of the magnificent Ordentlich-Cover theory of “universal portfolios”. I generalize Cover’s benchmark of the best constant-rebalanced portfolio (or 1-linear trading strategy) in hindsight by considering the best bilinear trading strategy determined in hindsight for the realized sequence of asset prices. A bilinear trading strategy is a mini two-period active strategy whose final capital growth factor is linear separately in each period’s gross return vector for the asset market. I apply Thomas Cover’s ingenious performance-weighted averaging technique to construct a universal bilinear portfolio that is guaranteed (uniformly for all possible market behavior) to compound its money at the same asymptotic rate as the best bilinear trading strategy in hindsight. Thus, the universal bilinear portfolio asymptotically dominates the original (1-linear) universal portfolio in the same technical sense that Cover’s universal portfolios asymptotically dominate all constant-rebalanced portfolios and all buy-and-hold strategies. In fact, like so many Russian dolls, one can get carried away and use these ideas to construct an endless hierarchy of ever more dominant H-linear universal portfolios.


Author(s):  
Rupert L. Frank ◽  
David Gontier ◽  
Mathieu Lewin

AbstractIn this paper we disprove part of a conjecture of Lieb and Thirring concerning the best constant in their eponymous inequality. We prove that the best Lieb–Thirring constant when the eigenvalues of a Schrödinger operator $$-\Delta +V(x)$$ - Δ + V ( x ) are raised to the power $$\kappa $$ κ is never given by the one-bound state case when $$\kappa >\max (0,2-d/2)$$ κ > max ( 0 , 2 - d / 2 ) in space dimension $$d\ge 1$$ d ≥ 1 . When in addition $$\kappa \ge 1$$ κ ≥ 1 we prove that this best constant is never attained for a potential having finitely many eigenvalues. The method to obtain the first result is to carefully compute the exponentially small interaction between two Gagliardo–Nirenberg optimisers placed far away. For the second result, we study the dual version of the Lieb–Thirring inequality, in the same spirit as in Part I of this work Gontier et al. (The nonlinear Schrödinger equation for orthonormal functions I. Existence of ground states. Arch. Rat. Mech. Anal, 2021. https://doi.org/10.1007/s00205-021-01634-7). In a different but related direction, we also show that the cubic nonlinear Schrödinger equation admits no orthonormal ground state in 1D, for more than one function.


Author(s):  
Man Kam Kwong ◽  
A. Zettl
Keyword(s):  

SynopsisThe problem of determining the best constant κ in the inequality ‖y′‖≦K ‖y‖ ‖y″‖ is discussed in the context of the classical Lp spaces, 1 ≦ p ≦ ∞.


2021 ◽  
Vol 19 (1) ◽  
pp. 400-411
Author(s):  
Bing He ◽  
Yong Hong ◽  
Qiang Chen

Abstract In this paper, we establish equivalent parameter conditions for the validity of multiple integral half-discrete Hilbert-type inequalities with the nonhomogeneous kernel G ( n λ 1 ∥ x ∥ m , ρ λ 2 ) G\left({n}^{{\lambda }_{1}}\parallel x{\parallel }_{m,\rho }^{{\lambda }_{2}}\hspace{-0.16em}) ( λ 1 λ 2 > 0 {\lambda }_{1}{\lambda }_{2}\gt 0 ) and obtain best constant factors of the inequalities in specific cases. In addition, we also discuss their applications in operator theory.


Sign in / Sign up

Export Citation Format

Share Document