Spatial decay of the velocity field of an incompressible viscous fluid in

2005 ◽  
Vol 63 (4) ◽  
pp. 525-549 ◽  
Author(s):  
François Vigneron
2004 ◽  
Vol 14 (06) ◽  
pp. 795-818 ◽  
Author(s):  
CHANGHAO LIN ◽  
LAWRENCE E. PAYNE

In this paper, we study the transient flow of an incompressible viscous fluid in a semi-infinite channel assuming adherence at the channel boundary. We show that under appropriate restrictions on the data if the fluid is initially at rest and the channel entrance velocity and/or channel width are sufficiently small, the solution will tend exponentially to a transient laminar flow as the distance form the entry section tends to infinity. In fact explicit exponential decay bounds are obtained.


The results of an earlier paper are extended. The elastic field outside an inclusion or inhomogeneity is treated in greater detail. For a general inclusion the harmonic potential of a certain surface distribution may be used in place of the biharmonic potential used previously. The elastic field outside an ellipsoidal inclusion or inhomogeneity may be expressed entirely in terms of the harmonic potential of a solid ellipsoid. The solution gives incidentally the velocity field about an ellipsoid which is deforming homogeneously in a viscous fluid. An expression given previously for the strain energy of an ellipsoidal region which has undergone a shear transformation is generalized to the case where the region has elastic constants different from those of its surroundings. The Appendix outlines a general method of calculating biharmonic potentials.


1993 ◽  
Vol 115 (3) ◽  
pp. 302-312 ◽  
Author(s):  
J. H. Terhune ◽  
K. Karim-Panahi

The free vibration of cylindrical shells filled with a compressible viscous fluid has been studied by numerous workers using the linearized Navier-Stokes equations, the fluid continuity equation, and Flu¨gge ’s equations of motion for thin shells. It happens that solutions can be obtained for which the interface conditions at the shell surface are satisfied. Formally, a characteristic equation for the system eigenvalues can be written down, and solutions are usually obtained numerically providing some insight into the physical mechanisms. In this paper, we modify the usual approach to this problem, use a more rigorous mathematical solution and limit the discussion to a single thin shell of infinite length and finite radius, totally filled with a viscous, compressible fluid. It is shown that separable solutions are obtained only in a particular gage, defined by the divergence of the fluid velocity vector potential, and the solutions are unique to that gage. The complex frequency dependence for the transverse component of the fluid velocity field is shown to be a result of surface interaction between the compressional and vortex motions in the fluid and that this motion is confined to the boundary layer near the surface. Numerical results are obtained for the first few wave modes of a large shell, which illustrate the general approach to the solution. The axial wave number is complex for wave propagation, the imaginary part being the spatial attenuation coefficient. The frequency is also complex, the imaginary part of which is the temporal damping coefficient. The wave phase velocity is related to the real part of the axial wave number and turns out to be independent of frequency, with numerical value lying between the sonic velocities in the fluid and the shell. The frequency dependencies of these parameters and fluid velocity field mode shapes are computed for a typical case and displayed in non-dimensional graphs.


2013 ◽  
Vol 38 ◽  
pp. 61-73
Author(s):  
MA Haque

In this paper laminar flow of incompressible viscous fluid has been considered. Here two numerical methods for solving boundary layer equation have been discussed; (i) Keller Box scheme, (ii) Shooting Method. In Shooting Method, the boundary value problem has been converted into an equivalent initial value problem. Finally the Runge-Kutta method is used to solve the initial value problem. DOI: http://dx.doi.org/10.3329/rujs.v38i0.16549 Rajshahi University J. of Sci. 38, 61-73 (2010)


Sign in / Sign up

Export Citation Format

Share Document