shear transformation
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 42)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 8 ◽  
Author(s):  
C. Zhang ◽  
D. Zhou ◽  
B. Hou

The Zr65Cu18Ni7Al10 bulk metallic glass with smaller diameter exhibits higher fracture strength under dynamic compression, which is ascribed to concentration of flow defect. The density of shear bands in the sample surface will increase with decreasing of the diameter, whereas, average distance and width of tear ridges in the fracture surface will increase with larger diameter. In addition, the volume of shear transformation zone can be estimated, which presents a ductile-to-brittle transition with the change of diameter. The physical graph of shear transformation zone can be obtained from the experimental analysis.


Author(s):  
Vijaya Kumar V. ◽  
G. Bindu Madhavi ◽  
V. Krishna Vakula

This paper proposes an efficient method called tilted rectangle (TR) for detecting and correcting of slant angle of the manuscript Telugu words (MTW). Telugu language is one of India's common languages spoken by over 80 million individuals. The complex characters are attached with some extra marks known as “maatras” and “vatthus,” and it is challenging to detect slant angle. The proposed TR method initially performs preprocessing and identifies a connected component within the given Telugu manuscript word. Then, it estimates the slant angle of each connected component by deriving connected slant lines on the boundary of each connected component. After this process, the proposed TR method estimates the entire word's overall slant angle from the average of estimated slant angle and height of all connected components. The correction of the word's slant angle is done in the reverse direction by applying a simple shear transformation. With 1000 manuscript records of three different kinds, the algorithm is tested. Experimental findings indicate the efficacy of the approach proposed.


2021 ◽  
Vol 130 (12) ◽  
pp. 125104
Author(s):  
B. B. Fan ◽  
Y. Huang ◽  
M. Z. Li

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4503
Author(s):  
Kseniya Bazaleeva ◽  
Alexander Golubnichiy ◽  
Anton Chernov ◽  
Andrey Ni ◽  
Ruslan Mendagaliyev

An anomaly in martensitic transformation (the effect of martensitic two-peak splitting in the temperature-dependent thermal expansion coefficient) in complex alloyed 12% chromium steels Fe-12%Cr-Ni-Mo-W-Nb-V-B (ChS-139), Fe-12%Cr-Mo-W-Si-Nb-V (EP-823) and Fe-12%Cr-2%W-V-Ta-B (EK-181) was investigated in this study. This effect is manifested in steels with a higher degree of alloying (ChS-139). During varying temperature regimes in dilatometric analysis, it was found that the splitting of the martensitic peak was associated with the superposition of two martensitic transformations of austenite depleted and enriched with alloying elements. The anomaly was subsequently eliminated by homogenization of the steel composition due to high-temperature aging in the γ-region. It was shown that if steel is heated to 900 °C, which lies in the (α + γ) phase region or slightly higher during cooling, then the decomposition of austenite proceeds in two stages: during the first stage, austenite is diffused into ferrite with carbides; during the second stage, shear transformation of austenite to martensite occurs.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 834
Author(s):  
Zhendi Zhang ◽  
Hang Xu ◽  
Xiao-Ye Zhou ◽  
Tao Guo ◽  
Xiaolu Pang ◽  
...  

NiP/Ni composite coatings with different thicknesses were prepared on coarse-grained Ni substrates by electrodeposition. The tensile tests show that compared with the substrate, the toughness and strength of the samples with multilayer composite coatings are greatly improved. The uniform elongation is increased from 24% to 43%, and the yield strength is increased from 108 to 172 MPa. In the deformation process, the geometrically necessary dislocations accumulate, resulting in long-range back stress, leading to strain hardening, showing synergistic strength and ductility. The mechanical properties of composite coatings are strongly affected by the layer thickness. Molecular dynamics studies show that there is a more uniform distribution of the shear strain in thinner coatings, and the propagation of shear transformation zones (STZs) is restrained, preventing the formation of a large shear band. With the decrease of thickness, the deformation of the NiP layer changes from shear fracture to the coexistence of uniform deformation and shear deformation. The interface resistance of the multilayer structure increases the resistance of crack propagation and alleviates the effects of NiP layer cracking on substrate cracking. Multilayer amorphous/crystalline coatings therefore may increase the toughness of the Ni substrate.


Author(s):  
Sree Harsha Nandam ◽  
Ruth Schwaiger ◽  
Aaron Kobler ◽  
Christian Kübel ◽  
Chaomin Wang ◽  
...  

Abstract Strain localization during plastic deformation drastically reduces the shear band stability in metallic glasses, ultimately leading to catastrophic failure. Therefore, improving the plasticity of metallic glasses has been a long-standing goal for several decades. In this regard, nanoglass, a novel type of metallic glass, has been proposed to exhibit differences in short and medium range order at the interfacial regions, which could promote the formation of shear transformation zones. In the present work, by introducing heterogeneities at the nanoscale, both crystalline and amorphous, significant improvements in plasticity are realized in micro-compression tests. Both amorphous and crystalline dispersions resulted in smaller strain bursts during plastic deformation. The yield strength is found to increase significantly in Cu–Zr nanoglasses compared to the corresponding conventional metallic glasses. The reasons for the mechanical behavior and the importance of nanoscale dispersions to tailor the properties is discussed in detail. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document