scholarly journals Asymmetric reduction of β-carbonyl phenylpropionate by undifferentiated cells of white turnip in phosphate buffer/organic solvent

2009 ◽  
Vol 25 ◽  
pp. S140
Author(s):  
Z. Ou ◽  
G. Yang
2018 ◽  
Vol 921 ◽  
pp. 54-59
Author(s):  
Zhi Hin Ou ◽  
Jia Hui Xu

S-licarbazepine was synthesized by asymmetric reduction of oxcarbazepine in organic solvent/phosphate buffer biphasic system with Bacillus anthracis CGMCC No.12337 as catalyst. Effects of many factors on reduction were studied. Dibutyl phthalate/phosphate buffer was selected as the optimal biphasic system for reduction. The optimum reduction conditions are as follows: volume ratio of dibutyl phthalate and phosphate buffer 1:1, 30 g/L iospropanol as co-substrate, phosphate buffer pH 5, substrate concentration 7.92 mmol/L, cell concentration 30 g/L, 32°C,180 rpm. The conversion and enantiometric excess of S-licarbazepine reached 97.32% and 99.80%. An efficient method for synthesis of S-licarbazepine was provided.


Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 391 ◽  
Author(s):  
Ying Chen ◽  
Nana Xia ◽  
Yuewang Liu ◽  
Pu Wang

(R)-1-[4-(Trifluoromethyl)phenyl]ethanol is an important pharmaceutical intermediate of a chemokine CCR5 antagonist. In the present study, a bioprocess for the asymmetric reduction of 4-(trifluoromethyl)acetophenone to (R)-1-[4-(trifluoromethyl)phenyl]ethanol was developed by recombinant Escherichia coli cells with excellent enantioselectivity. In order to overcome the conversion limitation performed in the conventional buffer medium resulting from poor solubility of non-natural substrate, we subsequently established a polar organic solvent-aqueous medium to improve the efficacy. Isopropanol was selected as the most suitable cosolvent candidate, based on the investigation on a substrate solubility test and cell membrane permeability assay in different organic solvent-buffer media. Under the optimum conditions, the preparative-scale asymmetric reduction generated a 99.1% yield with >99.9% product enantiomeric excess (ee) in a 15% (v/v) isopropanol proportion, at 100 mM of 4-(trifluoromethyl)acetophenone within 3 h. Compared to bioconversion in the buffer medium, the developed isopropanol-aqueous system enhanced the substrate concentration by 2-fold with a remarkably improved yield (from 62.5% to 99.1%), and shortened the reaction time by 21 h. Our study gave the first example for a highly enantioselective production of (R)-1-[4-(trifluoromethyl)phenyl]ethanol by a biological method, and the bioreduction of 4-(trifluoromethyl)acetophenone in a polar organic solvent-aqueous system was more efficient than that in the buffer solution only. This process is also scalable and has potential in application.


2007 ◽  
Vol 40 (5) ◽  
pp. 1305-1311 ◽  
Author(s):  
Yong-Ning Li ◽  
Xian-Ai Shi ◽  
Min-Hua Zong ◽  
Chun Meng ◽  
Ya-Qin Dong ◽  
...  

ChemBioChem ◽  
2020 ◽  
Vol 21 (8) ◽  
pp. 1217-1225 ◽  
Author(s):  
Dirk Tischler ◽  
Eric Gädke ◽  
Daniel Eggerichs ◽  
Alvaro Gomez Baraibar ◽  
Carolin Mügge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document