Hybrid synchronization of the general delayed and non-delayed complex dynamical networks via pinning control

2012 ◽  
Vol 89 ◽  
pp. 168-177 ◽  
Author(s):  
Xiangjun Wu ◽  
Hongtao Lu
2013 ◽  
Vol 43 (1) ◽  
pp. 394-399 ◽  
Author(s):  
Housheng Su ◽  
Zhihai Rong ◽  
Michael Z. Q. Chen ◽  
Xiaofan Wang ◽  
Guanrong Chen ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fang-Di Kong

In this paper, we study the synchronization problem for nonlinearly coupled complex dynamical networks on time scales. To achieve synchronization for nonlinearly coupled complex dynamical networks on time scales, a pinning control strategy is designed. Some pinning synchronization criteria are established for nonlinearly coupled complex dynamical networks on time scales, which guarantee the whole network can be pinned to some desired state. The model investigated in this paper generalizes the continuous-time and discrete-time nonlinearly coupled complex dynamical networks to a unique and general framework. Moreover, two numerical examples are given for illustration and verification of the obtained results.


2017 ◽  
Vol 103 ◽  
pp. 357-363 ◽  
Author(s):  
Hong-Li Li ◽  
Cheng Hu ◽  
Haijun Jiang ◽  
Zhidong Teng ◽  
Yao-Lin Jiang

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jianwen Feng ◽  
Ze Tang ◽  
Jingyi Wang ◽  
Yi Zhao

This paper addresses the hybrid synchronization problem in two nonlinearly coupled complex networks with asymmetrical coupling matrices under pinning control schemes. The hybrid synchronization of two complex networks is the outer antisynchronization between the driving network and the response network while the inner complete synchronization in the driving network and the response network. We will show that only a small number of pinning feedback controllers acting on some nodes are effective for synchronization control of the mentioned dynamical networks. Based on Lyapunov Stability Theory, some simple criteria for hybrid synchronization are derived for such dynamical networks by pinning control strategy. Numerical examples are provided to illustrate the effectiveness of our theoretical results.


2018 ◽  
Vol 41 (2) ◽  
pp. 540-551 ◽  
Author(s):  
Tianhu Yu ◽  
Menglong Su

The pinning synchronization problem is investigated for complex dynamical networks with hybrid coupling via impulsive control. Based on the Lyapunov stability theory, some novel synchronization criteria are derived and an impulsive pinning control law is proposed. By introducing a differential inequality for systems with piecewise constant arguments, it is not necessary to establish any relationship between the norms of the error states with or without piecewise constant arguments. Typical numerical examples are utilized to illustrate the validity and improvements as regards conservativeness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document