Smooth shift control of an automatic transmission for heavy-duty vehicles

2015 ◽  
Vol 159 ◽  
pp. 197-206 ◽  
Author(s):  
Fei Meng ◽  
Gang Tao ◽  
Huiyan Chen
2015 ◽  
Vol 9 (1) ◽  
pp. 333-338 ◽  
Author(s):  
Ma Wenxing ◽  
Zhang Yan ◽  
Wang Ruoyang ◽  
Lu Xiuquan

The structural concepts of Switch solenoid valve and proportional solenoid valve were proposed for the hydraulic shift control system of some hydrodynamic mechanical automatic transmissions. Shift oil pressure of stationary combination valve and proportional solenoid valve was modeled, simulated, contrasted and analyzed by dynamic simulation software in order to study the shift quality of heavy-duty vehicle automatic transmission. The results show that proportional solenoid valve is better to control the characteristic of shift oil pressure, reduce shift shock, improve shift quality and comfort than stationary combination valve. The correctness and validity of the model were verified through bench test, which reflected the dynamic characteristics of shift oil pressure of hydrodynamic mechanical automatic transmission. The results can be used to match the performance and predict heavy-duty vehicle shifting process, and to further lay the foundation for the enhancement of shift performance of the system.


Author(s):  
Mehmet Emin Mumcuoglu ◽  
Gokhan Alcan ◽  
Mustafa Unel ◽  
Onur Cicek ◽  
Mehmet Mutluergil ◽  
...  

2020 ◽  
Vol 53 (2) ◽  
pp. 13850-13854
Author(s):  
P. Polverino ◽  
I. Arsie ◽  
C. Pianese

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1036
Author(s):  
Yunxia Li ◽  
Lei Li

A countershaft brake is used as a transmission brake (TB) to realize synchronous shifting by reducing the automated mechanical transmission (AMT) input shaft’s speed rapidly. This process is performed to reduce shifting time and improve shifting quality for heavy-duty vehicles equipped with AMT without synchronizer. To improve controlled synchronous shifting, the AMT input shaft’s equivalent resistance torque and the TB’s characteristic parameters are studied. An AMT dynamic model under neutral gear position is analyzed during the synchronous control interval. A dynamic model of the countershaft brake is discussed, and its control flow is given. The parameter identification method of the AMT input shaft’s equivalent resistance torque is given on the basis of the least squares algorithm. The parameter identification of the TB’s characteristic parameters is proposed on the basis of the recursive least squares method (RLSM). Experimental results show that the recursive estimations of the TB’s characteristic parameters under different duty cycles of the TB solenoid valve, including brake torque estimation, estimation accuracy, and braking intensity estimation, can be effectively estimated. The research provides some reliable evidence to further study the synchronous shifting control schedule for heavy-duty vehicles with AMT.


2021 ◽  
Vol 191 ◽  
pp. 116891
Author(s):  
Stijn Broekaert ◽  
Theodoros Grigoratos ◽  
Dimitrios Savvidis ◽  
Georgios Fontaras

2009 ◽  
Vol 43 (10) ◽  
pp. 3905-3912 ◽  
Author(s):  
Subhasis Biswas ◽  
Vishal Verma ◽  
James J. Schauer ◽  
Flemming R. Cassee ◽  
Arthur K. Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document