Moderate activation of autophagy regulates the intracellular calcium ion concentration and mitochondrial membrane potential in beta-amyloid-treated PC12 cells

2016 ◽  
Vol 618 ◽  
pp. 50-57 ◽  
Author(s):  
Zhongfeng Xue ◽  
Yalei Guo ◽  
Yongqi Fang
1986 ◽  
Vol 103 (2) ◽  
pp. 439-450 ◽  
Author(s):  
G W Conrad ◽  
T J Rink

Peritoneal cells from thioglycollate-stimulated mice were allowed to adhere to coverglasses for 2 h to give a dense monolayer of adherent cells greater than 95% of which were macrophages. After incubation with the tetra-acetoxymethyl ester of quin2, coverglasses were rinsed with Ca2+-free saline, oriented at a 45 degree angle in square cuvettes containing a magnetically driven stir bar, and analyzed for changes in quin2 fluorescence in a spectrofluorimeter. Such fluorescence, taken as an indication of intracellular calcium ion concentration ([Ca2+]i), increased as exogenous calcium ion concentration ([Ca2+]o) was raised to 1 mM. At [Ca2+]o approximately equal to 10 microM, [Ca2+]i = 72 +/- 14 nM (n = 26); at [Ca2+]o = 1 mM, [Ca2+]i = 140-220 nM, levels not increased by N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine, a membrane-permeant chelator of heavy metals than can quench quin2. Addition of mouse alpha + beta fibroblast interferon, lipopolysaccharide, thrombin, collagen, vasopressin, ADP, compound 48/80, or U46619 did not change [Ca2+]i. However, addition of platelet activating factor (PAF) (2-20 ng/ml) raised [Ca2+]i by 480 nM within 1 min if [Ca2+]o = 1 mM. In the presence of 5 mM EGTA, PAF raised [Ca2+]i by 25 nM. This suggests that PAF causes influx of exogenous Ca2+, as well as releasing some Ca2+ from intracellular stores. Consistent with these results, when PAF was added to 1 mM Ca2+ in the presence of 100 microM Cd2+ or Mn2+ to block Ca2+ influx, [Ca2+]i increased by only intermediate amounts; at the times of such dampened peak response, [Ca2+]i could be raised within 1 min to normal PAF-stimulated levels by chelation of the exogenous heavy metals with diethylenetriaminepentaacetic acid. Normal PAF responses were observed in the presence of indomethacin. The lowest dose of PAF observed to raise [Ca2+]i was 0.1 ng/ml. Response of [Ca2+]i to 2-20 ng/ml PAF was transient, and second applications had no effect. The PAF response also was seen in cell suspensions. These results suggest that an increase in [Ca2+]i may be an early event in PAF activation of macrophages.


1999 ◽  
Vol 145 (6) ◽  
pp. 1265-1276 ◽  
Author(s):  
Pak-ming Lau ◽  
Robert S. Zucker ◽  
David Bentley

In neuronal growth cones, cycles of filopodial protrusion and retraction are important in growth cone translocation and steering. Alteration in intracellular calcium ion concentration has been shown by several indirect methods to be critically involved in the regulation of filopodial activity. Here, we investigate whether direct elevation of [Ca2+]i, which is restricted in time and space and is isolated from earlier steps in intracellular signaling pathways, can initiate filopodial protrusion. We raised [Ca2+]i level transiently in small areas of nascent axons near growth cones in situ by localized photolysis of caged Ca2+ compounds. After photolysis, [Ca2+]i increased from ∼60 nM to ∼1 μM within the illuminated zone, and then returned to resting level in ∼10–15 s. New filopodia arose in this area within 1–5 min, and persisted for ∼15 min. Elevation of calcium concentration within a single filopodium induced new branch filopodia. In neurons coinjected with rhodamine-phalloidin, F-actin was observed in dynamic cortical patches along nascent axons; after photolysis, new filopodia often emerged from these patches. These results indicate that local transient [Ca2+]i elevation is sufficient to induce new filopodia from nascent axons or from existing filopodia.


1979 ◽  
Vol 81 (1) ◽  
pp. 49-61
Author(s):  
P. G. Nelson ◽  
M. P. Henkart

A number of mesenchymal cells (fibroblasts, macrophages and megakaryocytes) respond to a variety of stimuli with large hyperpolarizations lasting several seconds (the H.A. response). The H.A. responses can occur as repetitive trains or oscillations. These hyperpolarizations are due to an increase of the surface membrane permeability to potassium ions which is probably mediated by an increase in the cytoplasmic free calcium ion concentration. Evidence is discussed which suggests that the source of this increased calcium, is least in part, an intracellular sequestering system, probably the endoplasmic reticulum. A model capable of producing oscillatory changes in membrane potential is proposed based on such an intracellular calcium sequestering and releasing system.


Sign in / Sign up

Export Citation Format

Share Document