Exponential synchronization of stochastic Cohen–Grossberg neural networks with mixed time-varying delays and reaction–diffusion via periodically intermittent control

2012 ◽  
Vol 31 ◽  
pp. 12-21 ◽  
Author(s):  
Qintao Gan
2014 ◽  
Vol 19 (1) ◽  
pp. 1-25 ◽  
Author(s):  
Qintao Gan ◽  
Hong Zhang ◽  
Jun Dong

This paper deals with the exponential synchronization problem for reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance. By using stochastic analysis approaches and constructing a novel Lyapunov–Krasovskii functional, a periodically intermittent controller is first proposed to guarantee the exponential synchronization of reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance in terms of p-norm. The obtained synchronization results are easy to check and improve upon the existing ones. Particularly, the traditional assumptions on control width and time-varying delays are removed in this paper. This paper also presents two illustrative examples and uses simulated results of these examples to show the feasibility and effectiveness of the proposed scheme.


Author(s):  
Qing Ding ◽  
Yinfang Song

This paper deals with the exponential synchronization problem of inertial Cohen–Grossberg neural networks with time-varying delays under periodically intermittent control. In light of Lyapunov–Krasovskii functional method and inequality techniques, some sufficient conditions are attained to ensure the exponential synchronization of the master-slave system on the basis of p-norm. Meanwhile, the periodically intermittent control schemes are designed. Finally, in order to verify the effectiveness of theoretical results, some numerical simulations are provided.


Author(s):  
Qintao Gan ◽  
Yang Li

In this paper, the exponential synchronization problem for fuzzy Cohen-Grossberg neural networks with time-varying delays, stochastic noise disturbance, and reaction-diffusion effects are investigated. By introducing a novel Lyapunov-Krasovskii functional with the idea of delay partitioning, a periodically intermittent controller is developed to derive sufficient conditions ensuring the addressed neural networks to be exponentially synchronized in terms of p-norm. The results extend and improve upon earlier work. A numerical example is provided to show the effectiveness of the proposed theories.


2014 ◽  
Vol 07 (02) ◽  
pp. 1450017
Author(s):  
Pinghua Yang ◽  
Xinan Tang

This paper deals with exponential synchronization for a class of neural networks with mixed time-varying delays via periodically intermittent control. Some novel and effective exponential synchronization criteria are derived by constructing Lyapunov functional and applying some analysis techniques. These results presented in this paper generalize and improve many known results. Finally, this paper presents an illustrative example and uses the simulated results to show the feasibility and effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document