scholarly journals Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller

2016 ◽  
Vol 76 ◽  
pp. 97-105 ◽  
Author(s):  
Zhixia Ding ◽  
Yi Shen
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Chong Chen ◽  
Zhixia Ding

This paper investigates projective synchronization of nonidentical fractional-order memristive neural networks (NFMNN) via sliding mode controller. Firstly, based on the sliding mode control theory, a new fractional-order integral sliding mode controller is designed to ensure the occurrence of sliding motion. Furthermore, according to fractional-order differential inequalities and fractional-order Lyapunov direct method, the trajectories of the system converge to the sliding mode surface to carry out sliding mode motion, and some sufficient criteria are obtained to achieve global projective synchronization of NFMNN. In addition, the conclusions extend and improve some previous works on the synchronization of fractional-order memristive neural networks (FMNN). Finally, a simulation example is given to verify the effectiveness and correctness of the obtained results.


2013 ◽  
Vol 336-338 ◽  
pp. 467-470
Author(s):  
Su Hai Huang

This paper deals with chaos synchronization of the Liu chaotic system with fractional-order. Based on the fractional-order stability theory, an adaptive sliding mode controller has been constructed to realize projective synchronization of fractional-order Liu chaotic system with unknown parameter. An illustrative simulation result is given to demonstrate the effectiveness of the proposed sliding mode controller.


2017 ◽  
Vol 31 (14) ◽  
pp. 1750160 ◽  
Author(s):  
Shuai Song ◽  
Xiaona Song ◽  
Ines Tejado Balsera

This paper investigates the mixed [Formula: see text] and passive projective synchronization problem for fractional-order (FO) memristor-based neural networks with time delays. Our aim is to design a controller such that, though the unavoidable phenomena of time delay and external disturbances is fully considered, the resulting closed-loop system is stable with a mixed [Formula: see text] and passive performance level. By combining sliding mode control and adaptive control methods, a novel adaptive sliding mode control strategy is designed for the synchronization of time-delayed FO dynamic networks. Via the application of FO system stability theory, the projective synchronization conditions are addressed in terms of linear matrix inequalities. Based on the conditions, a desired controller which can guarantee the stability of the closed-loop system and also ensure a mixed [Formula: see text] and passive performance level is designed. Finally, two simulation examples are given to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document