Inhibition by endomorphin-1 and endomorphin-2 of excitatory transmission in adult rat substantia gelatinosa neurons

Neuroscience ◽  
2006 ◽  
Vol 139 (3) ◽  
pp. 1095-1105 ◽  
Author(s):  
T. Fujita ◽  
E. Kumamoto
2015 ◽  
Vol 606 ◽  
pp. 94-99 ◽  
Author(s):  
Zhi-Hao Xu ◽  
Chong Wang ◽  
Tsugumi Fujita ◽  
Chang-Yu Jiang ◽  
Eiichi Kumamoto

2019 ◽  
Vol 15 ◽  
pp. 174480691882424 ◽  
Author(s):  
Akiko Koga ◽  
Tsugumi Fujita ◽  
Lian-Hua Piao ◽  
Terumasa Nakatsuka ◽  
Eiichi Kumamoto

Neuroreport ◽  
2016 ◽  
Vol 27 (3) ◽  
pp. 166-171 ◽  
Author(s):  
Lan Zhu ◽  
Tsugumi Fujita ◽  
Chang-Yu Jiang ◽  
Eiichi Kumamoto

2013 ◽  
Vol 110 (3) ◽  
pp. 658-671 ◽  
Author(s):  
Hai-Yuan Yue ◽  
Chang-Yu Jiang ◽  
Tsugumi Fujita ◽  
Eiichi Kumamoto

Transient receptor potential (TRP) channels are thought to play a role in regulating nociceptive transmission to spinal substantia gelatinosa (SG) neurons. It remains to be unveiled whether the TRP channels in the central nervous system are different in property from those involved in receiving nociceptive stimuli in the peripheral nervous system. We examined the effect of the vanilloid compound zingerone, which activates TRPV1 channels in the cell body of a primary afferent neuron, on glutamatergic excitatory transmission in the SG neurons of adult rat spinal cord slices by using the whole cell patch-clamp technique. Bath-applied zingerone reversibly and concentration-dependently increased spontaneous excitatory postsynaptic current (EPSC) frequency. This effect was accompanied by an inward current at −70 mV that was resistant to glutamate receptor antagonists. These zingerone effects were repeated and persisted in Na+-channel blocker tetrodotoxin-, La3+-, or IP3-induced Ca2+-release inhibitor 2-aminoethoxydiphenyl borate-containing or Ca2+-free Krebs solution. Zingerone activity was resistant to the selective TRPV1 antagonist capsazepine but sensitive to the nonselective TRP antagonist ruthenium red, the TRPA1 antagonist HC-030031, and the Ca2+-induced Ca2+-release inhibitor dantrolene. TRPA1 agonist allyl isothiocyanate but not capsaicin inhibited the facilitatory effect of zingerone. On the other hand, zingerone reduced monosynaptically evoked EPSC amplitudes, as did TRPA1 agonists. Like allyl isothiocyanate, zingerone enhanced GABAergic spontaneous inhibitory transmission in a manner sensitive to tetrodotoxin. We conclude that zingerone presynaptically facilitates spontaneous excitatory transmission, probably through Ca2+-induced Ca2+-release mechanisms, and produces a membrane depolarization in SG neurons by activating TRPA1 but not TRPV1 channels.


2007 ◽  
Vol 58 ◽  
pp. S73
Author(s):  
Tsugumi Fujita ◽  
Tao Liu ◽  
Terumasa Nakatsuka ◽  
Eiichi Kumamoto

2009 ◽  
Vol 102 (1) ◽  
pp. 312-319 ◽  
Author(s):  
T. Fujita ◽  
T. Liu ◽  
T. Nakatsuka ◽  
E. Kumamoto

Proteinase-activated receptors (PARs) have a unique activation mechanism in that a proteolytically exposed N-terminal region acts as a tethered ligand. A potential impact of PAR on sensory processing has not been fully examined yet. Here we report that synthetic peptides with sequences corresponding to PAR ligands enhance glutamatergic excitatory transmission in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by using the whole cell patch-clamp technique. The frequency of spontaneous excitatory postsynaptic current (EPSC) was increased by PAR-1 agonist SFLLRN-NH2 (by 47% at 1 μM) with small increases by PAR-2 and -4 agonists (SLIGKV-NH2 and GYPGQV-OH, respectively; at >3 μM); there was no change in its amplitude or in holding current at −70 mV. The PAR-1 peptide action was inhibited by PAR-1 antagonist YFLLRNP-OH. TFLLR-NH2, an agonist which is more selective to PAR-1 than SFLLRN-NH2, dose-dependently increased spontaneous EPSC frequency (EC50 = 0.32 μM). A similar presynaptic effect was produced by PAR-1 activating proteinase thrombin in a manner sensitive to YFLLRNP-OH. The PAR-1 peptide action was resistant to tetrodotoxin and inhibited in Ca2+-free solution. Primary-afferent monosynaptically evoked EPSC amplitudes were unaffected by PAR-1 agonist. These results indicate that PAR-1 activation increases the spontaneous release of l-glutamate onto SG neurons from nerve terminals in a manner dependent on extracellular Ca2+. Considering that sensory processing within the SG plays a pivotal role in regulating nociceptive transmission to the spinal dorsal horn, the PAR-1-mediated glutamatergic transmission enhancement could be involved in a positive modulation of nociceptive transmission.


Sign in / Sign up

Export Citation Format

Share Document