inhibitory transmission
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 27)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Peng Zhang ◽  
Lan Lin ◽  
Rong Mei ◽  
Fengli Zhang ◽  
Yangmei Chen ◽  
...  

Abstract Background: Disruption of GABAAR synaptic clustering and a decrease number in their cell surface are thought to contribute to the alteration in the balance between excitatory and inhibitory neurotransmission, which contributes to seizure induction and propagation. Cleft lip and palate transmembrane protein 1 (Clptm1), a multi-pass transmembrane protein, has been showed that it is an intracellular molecule that controls forward trafficking of GABAAR. Clptm1 downregulating increased miniature inhibitory postsynaptic current (mIPSC) in vivo. Thus, Clptm1 controls phasic and tonic inhibitory transmission in brain. In this study, we hypothesized that Clptm1 may be involved in epileptic seizure by regulating GABAAR-mediated inhibitory synaptic transmission in epileptic model.Methods and Results: In PTZ-induced epileptic model, we found that Clptm1 was increased in temporal lobe epilepsy (TLE) patients as well as in epileptic model. Then, we showed that Clptm1 downregulation exerted antiepileptic activities in epileptic model, which was associated to the increased surface GABAARγ2 expression and mIPSCs amplitudes.Conclusions: Clptm1 downregulation exerted antiepileptic activities in epileptic model, thus, it may be a promising target for antiepileptic treatments.


Author(s):  
Nigel C. Dao ◽  
Dakota F. Brockway ◽  
Malini Suresh Nair ◽  
Avery R. Sicher ◽  
Nicole A. Crowley

AbstractSomatostatin (SST) neurons have been implicated in a variety of neuropsychiatric disorders such as depression and anxiety, but their role in substance use disorders, including alcohol use disorder (AUD), is not fully characterized. Here, we found that repeated cycles of alcohol binge drinking via the Drinking-in-the-Dark (DID) model led to hypoactivity of SST neurons in the prelimbic (PL) cortex by diminishing their action potential firing capacity and excitatory/inhibitory transmission dynamic. We examined their role in regulating alcohol consumption via bidirectional chemogenetic manipulation. Both hM3Dq-induced excitation and KORD-induced silencing of PL SST neurons reduced alcohol binge drinking in males and females, with no effect on sucrose consumption. Alcohol binge drinking disinhibited pyramidal neurons by augmenting SST neurons-mediated GABA release and synaptic strength onto other GABAergic populations and reducing spontaneous inhibitory transmission onto pyramidal neurons. Pyramidal neurons additionally displayed increased intrinsic excitability. Direct inhibition of PL pyramidal neurons via hM4Di was sufficient to reduce alcohol binge drinking. Together these data revealed an SST-mediated microcircuit in the PL that modulates the inhibitory dynamics of pyramidal neurons, a major source of output to subcortical targets to drive reward-seeking behaviors and emotional response.


2021 ◽  
Author(s):  
Allison R. Fusilier ◽  
Jennifer A. Davis ◽  
Jodi R. Paul ◽  
Stefani D. Yates ◽  
Laura J. McMeekin ◽  
...  

ABSTRACTPatients with Alzheimer’s disease (AD) often have fragmentation of sleep/wake cycles and disrupted 24-h (circadian) activity. Despite this, little work has investigated the potential underlying day/night disruptions in cognition and neuronal physiology in the hippocampus. The molecular clock, an intrinsic transcription-translation feedback loop that regulates circadian behavior, may also regulate hippocampal neurophysiological activity. We hypothesized that disrupted diurnal variation in clock gene expression in the hippocampus corresponds with loss of normal day/night differences in membrane excitability, synaptic physiology, and cognition. We previously reported that the Tg-SwDI mouse model of AD has disrupted circadian locomotor rhythms and neurophysiological output of the suprachiasmatic nucleus (the primary circadian clock). Here, we report that Tg-SwDI mice failed to show day-night differences in a spatial working memory task, unlike wild-type controls that exhibited enhanced spatial working memory at night. Moreover, Tg-SwDI mice had lower levels of Per2, one of the core components of the molecular clock, at both mRNA and protein levels when compared to age-matched controls. Interestingly, we discovered neurophysiological impairments in area CA1 of the Tg-SwDI hippocampus. In controls, spontaneous inhibitory post-synaptic currents (sIPSCs) in pyramidal cells showed greater amplitude and lower inter-event interval during the day than the night. However, the normal day/night differences in sIPSCs were absent (amplitude) or reversed (inter-event interval) in pyramidal cells from Tg-SwDI mice. In control mice, current injection into CA1 pyramidal cells produced more firing during the night than during the day, but no day/night difference in excitability was observed in Tg-SwDI mice. The normal day/night difference in excitability in controls was blocked by GABA receptor inhibition. Together, these results demonstrate that the normal diurnal regulation of inhibitory transmission in the hippocampus is diminished in a mouse model of AD, leading to decreased daytime inhibition onto hippocampal CA1 pyramidal cells. Uncovering disrupted day/night differences in circadian gene regulation, hippocampal physiology, and memory in AD mouse models may provide insight into possible chronotherapeutic strategies to ameliorate Alzheimer’s disease symptoms or delay pathological onset.


2020 ◽  
Vol 52 (11) ◽  
pp. 4563-4585
Author(s):  
Israel Conde Rojas ◽  
Jackeline Acosta‐García ◽  
Rene Nahum Caballero‐Florán ◽  
Rafael Jijón‐Lorenzo ◽  
Sergio Recillas‐Morales ◽  
...  

2020 ◽  
Author(s):  
Israel Conde Rojas ◽  
Jackeline Acosta ◽  
Rene Nahum Caballero‐Florán ◽  
Rafael Jijón‐Lorenzo ◽  
Sergio Recillas‐Morales ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document