scholarly journals A multi-wavelength streak-optical-pyrometer for warm-dense matter experiments at NDCX-I and NDCX-II

Author(s):  
P.A. Ni ◽  
F.M. Bieniosek ◽  
E. Henestroza ◽  
S.M. Lidia
2013 ◽  
Vol 31 (2) ◽  
pp. 333-336
Author(s):  
P.A. Ni ◽  
R.M. More ◽  
F.M. Bieniosek

AbstractThis paper examines the reliability of a widely used method for temperature determination by multi-wavelength pyrometry. In recent warm dense matter experiments with ion-beam heated metal foils, we found that the statistical quality of the fit to the measured data is not necessarily a measure of the accuracy of the inferred temperature. We found a specific example where a second-best fit leads to a more realistic temperature value. The physics issue is the wavelength-dependent emissivity of the hot surface. We discuss improvements of the multi-frequency pyrometry technique, which will give a more reliable determination of the temperature from emission data.


2020 ◽  
Vol 27 (12) ◽  
pp. 122704
Author(s):  
Yuzhi Zhang ◽  
Chang Gao ◽  
Qianrui Liu ◽  
Linfeng Zhang ◽  
Han Wang ◽  
...  

Plasma ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 294-308
Author(s):  
William A. Angermeier ◽  
Thomas G. White

Wave packet molecular dynamics (WPMD) has recently received a lot of attention as a computationally fast tool with which to study dynamical processes in warm dense matter beyond the Born–Oppenheimer approximation. These techniques, typically, employ many approximations to achieve computational efficiency while implementing semi-empirical scaling parameters to retain accuracy. We investigated three of the main approximations ubiquitous to WPMD: a restricted basis set, approximations to exchange, and the lack of correlation. We examined each of these approximations in regard to atomic and molecular hydrogen in addition to a dense hydrogen plasma. We found that the biggest improvement to WPMD comes from combining a two-Gaussian basis with a semi-empirical correction based on the valence-bond wave function. A single parameter scales this correction to match experimental pressures of dense hydrogen. Ultimately, we found that semi-empirical scaling parameters are necessary to correct for the main approximations in WPMD. However, reducing the scaling parameters for more ab-initio terms gives more accurate results and displays the underlying physics more readily.


Sign in / Sign up

Export Citation Format

Share Document