Defect formation in iron by MeV ion beam investigated with a positron beam and electrical resistivity measurement

Author(s):  
T. Iwai ◽  
K. Murakami ◽  
T. Iwata ◽  
Y. Katano
Author(s):  
Johannes Webel ◽  
Adrian Herges ◽  
Dominik Britz ◽  
Eric Detemple ◽  
Volker Flaxa ◽  
...  

Microalloying of low carbon steel with niobium (Nb) and titanium (Ti) is standardly applied in high-strength low-alloy (HSLA) steels enabling austenite conditioning during thermo-mechanical controlled processing (TMCP), which results in pronounced grain refinement in the finished steel. The metallurgical effects of microalloying elements are related solute drag and precipitate particle pinning, both acting on the austenite grain boundary thereby delaying or suppressing recrystallization of the deformed grain. In that respect it is important to better understand the precipitation kinetics as well as the precipitation sequence in a typical Nb-Ti-microalloyed steel. Various characterization methods have been utilized in this study for tracing microalloy precipitation after simulating different austenite TMCP conditions in a Gleeble apparatus. Atom probe tomography (APT), scanning transmission electron microscopy in a focused ion beam equipped scanning electron microscope (STEM-on-FIB) and electrical resistivity measurements provide complementary information on the precipitation status and are correlated with each other. It will be demonstrated that accurate electrical resistivity measurements can monitor the general consumption of solute microalloys (Nb) during hot working which was complemented by APT measurements of the steel matrix. On the other hand, STEM revealed that a large part of Nb-containing particles during hot working are co-precipitated with titanium during cooling from the austenitizing temperature. Precipitates that form during cooling or isothermal holding can be distinguished from strain-induced precipitates by corroborating STEM measurements with APT results. APT specifically allows obtaining detailed information about the chemical composition of precipitates as well as the distribution of elements inside the particle. Electrical resistivity measurement, on the contrary, provides macroscopic information on the progress of precipitation and can be calibrated by APT. The current paper highlights the complementarity of these methods and shows first results within the framework of a larger study on strain-induced precipitation.


2019 ◽  
Vol 26 ◽  
pp. 251
Author(s):  
A. Theodorou ◽  
Z. Kotsina ◽  
M. Axiotis ◽  
G. Apostolopoulos

As an important part of fusion materials research, evaluation of radiation damage in fusion materials has been emphasized more than a half century. In order to improve our understanding of radiation damage in fusion materials, an upgrade has been performed of the materials irradiation facility IR2, which is located at the NCSR “Demokritos” 5.5 MV TANDEM accelerator. The upgraded facility allows irradiation at higher ion beam currents while ensuring that the target temperature remains below 10 K. It provides in-situ electrical resistivity measurements on several samples for real-time monitoring of radiation damage as well as in-situ post-irradiation annealing up to 300 K. The upgraded IR2 facility has been successfully employed in radiation damage and recovery studies of metallic materials with applications in fusion research.


2005 ◽  
Vol 86 (6) ◽  
pp. 064104 ◽  
Author(s):  
Yonghao Han ◽  
Chunxiao Gao ◽  
Yanzhang Ma ◽  
Hongwu Liu ◽  
Yuewu Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document