Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geophysics in Fourier–Besov spaces

2019 ◽  
Vol 48 ◽  
pp. 445-465 ◽  
Author(s):  
Jinyi Sun ◽  
Shangbin Cui
Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 165
Author(s):  
Muhammad Zainul Abidin ◽  
Naeem Ullah ◽  
Omer Abdalrhman Omer

We consider the Cauchy problem of the three-dimensional primitive equations of geophysics. By using the Littlewood–Paley decomposition theory and Fourier localization technique, we prove the global well-posedness for the Cauchy problem with the Prandtl number P=1 in variable exponent Fourier–Besov spaces for small initial data in these spaces. In addition, we prove the Gevrey class regularity of the solution. For the primitive equations of geophysics, our results can be considered as a symmetry in variable exponent Fourier–Besov spaces.


Author(s):  
Xin Liu ◽  
Edriss S. Titi

AbstractThis work is devoted to establishing the local-in-time well-posedness of strong solutions to the three-dimensional compressible primitive equations of atmospheric dynamics. It is shown that strong solutions exist, are unique, and depend continuously on the initial data, for a short time in two cases: with gravity but without vacuum, and with vacuum but without gravity.


2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Peter Korn

AbstractWe consider the hydrostatic Boussinesq equations of global ocean dynamics, also known as the “primitive equations”, coupled to advection–diffusion equations for temperature and salt. The system of equations is closed by an equation of state that expresses density as a function of temperature, salinity and pressure. The equation of state TEOS-10, the official description of seawater and ice properties in marine science of the Intergovernmental Oceanographic Commission, is the most accurate equations of state with respect to ocean observation and rests on the firm theoretical foundation of the Gibbs formalism of thermodynamics. We study several specifications of the TEOS-10 equation of state that comply with the assumption underlying the primitive equations. These equations of state take the form of high-order polynomials or rational functions of temperature, salinity and pressure. The ocean primitive equations with a nonlinear equation of state describe richer dynamical phenomena than the system with a linear equation of state. We prove well-posedness for the ocean primitive equations with nonlinear thermodynamics in the Sobolev space $${{\mathcal {H}}^{1}}$$ H 1 . The proof rests upon the fundamental work of Cao and Titi (Ann. Math. 166:245–267, 2007) and also on the results of Kukavica and Ziane (Nonlinearity 20:2739–2753, 2007). Alternative and older nonlinear equations of state are also considered. Our results narrow the gap between the mathematical analysis of the ocean primitive equations and the equations underlying numerical ocean models used in ocean and climate science.


Sign in / Sign up

Export Citation Format

Share Document