scholarly journals Global Well-Posedness of the Ocean Primitive Equations with Nonlinear Thermodynamics

2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Peter Korn

AbstractWe consider the hydrostatic Boussinesq equations of global ocean dynamics, also known as the “primitive equations”, coupled to advection–diffusion equations for temperature and salt. The system of equations is closed by an equation of state that expresses density as a function of temperature, salinity and pressure. The equation of state TEOS-10, the official description of seawater and ice properties in marine science of the Intergovernmental Oceanographic Commission, is the most accurate equations of state with respect to ocean observation and rests on the firm theoretical foundation of the Gibbs formalism of thermodynamics. We study several specifications of the TEOS-10 equation of state that comply with the assumption underlying the primitive equations. These equations of state take the form of high-order polynomials or rational functions of temperature, salinity and pressure. The ocean primitive equations with a nonlinear equation of state describe richer dynamical phenomena than the system with a linear equation of state. We prove well-posedness for the ocean primitive equations with nonlinear thermodynamics in the Sobolev space $${{\mathcal {H}}^{1}}$$ H 1 . The proof rests upon the fundamental work of Cao and Titi (Ann. Math. 166:245–267, 2007) and also on the results of Kukavica and Ziane (Nonlinearity 20:2739–2753, 2007). Alternative and older nonlinear equations of state are also considered. Our results narrow the gap between the mathematical analysis of the ocean primitive equations and the equations underlying numerical ocean models used in ocean and climate science.

2015 ◽  
Vol 45 (10) ◽  
pp. 2564-2579 ◽  
Author(s):  
Fabien Roquet ◽  
Gurvan Madec ◽  
Laurent Brodeau ◽  
J. Nycander

AbstractThere is a growing realization that the nonlinear nature of the equation of state has a deep impact on the global ocean circulation; however, the understanding of the global effects of these nonlinearities remains elusive. This is partly because of the complicated formulation of the seawater equation of state making it difficult to handle in theoretical studies. In this paper, a hierarchy of polynomial equations of state of increasing complexity, optimal in a least squares sense, is presented. These different simplified equations of state are then used to simulate the ocean circulation in a global 2°-resolution configuration. Comparisons between simulated ocean circulations confirm that nonlinear effects are of major importance, in particular influencing the circulation through determination of the static stability below the mixed layer, thus controlling rates of exchange between the atmosphere and the ocean interior. It is found that a simple polynomial equation of state, with a quadratic term in temperature (for cabbeling), a temperature–pressure product term (for thermobaricity), and a linear term in salinity, that is, only four tuning parameters, is enough to simulate a reasonably realistic global circulation. The best simulation is obtained when the simplified equation of state is forced to have an accurate thermal expansion coefficient near the freezing point, highlighting the importance of polar regions for the global stratification. It is argued that this simplified equation of state will be of great value for theoretical studies and pedagogical purposes.


Author(s):  
Natalia Andrulionis ◽  
Natalia Andrulionis ◽  
Ivan Zavialov ◽  
Ivan Zavialov ◽  
Elena Kovaleva ◽  
...  

This article presents a new method of laboratory density determination and construction equations of state for marine waters with various ionic compositions and salinities was developed. The validation of the method was performed using the Ocean Standard Seawater and the UNESCO thermodynamic equation of state (EOS-80). Density measurements of water samples from the Aral Sea, the Black Sea and the Issyk-Kul Lake were performed using a high-precision laboratory density meter. The obtained results were compared with the density values calculated for the considered water samples by the EOS-80 equation. It was shown that difference in ionic composition between Standard Seawater and the considered water bodies results in significant inaccuracies in determination of water density using the EOS-80 equation. Basing on the laboratory measurements of density under various salinity and temperature values we constructed a new equation of state for the Aral Sea and the Black Sea water samples and estimated errors for their coefficients.


1984 ◽  
Vol 49 (5) ◽  
pp. 1116-1121
Author(s):  
Josef P. Novák ◽  
Jaroslav Matouš ◽  
Petr Pick ◽  
Jiří Pick

Published data on the solubility of water in compressed gases were employed for calculating the interaction coefficients kij in the Redlich-Kwong-Soave equations of state for binary systems of water with argon, nitrogen, CO2, N2O, CH4, C2H6, or C2H4. With these coefficients, the estimate of the solubility of water in these gases has been improved by more than one order.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Lütgert ◽  
J. Vorberger ◽  
N. J. Hartley ◽  
K. Voigt ◽  
M. Rödel ◽  
...  

AbstractWe present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, $$({\hbox {C}}_{10} {\hbox {H}}_8 {\hbox {O}}_4)_n$$ ( C 10 H 8 O 4 ) n , also called mylar) shock-compressed to ($$155 \pm 20$$ 155 ± 20 ) GPa and ($$6000 \pm 1000$$ 6000 ± 1000 ) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.


1974 ◽  
Vol 27 (3) ◽  
pp. 647 ◽  
Author(s):  
DV Fenby ◽  
NF Pasco

There has recently been a revival of interest in theories of liquid mixtures based on analytic equations of state for pure fluids. We have shown that the method used to determine the parameters of the pure-liquid equation of state has a significant effect on the excess thermodynamic properties obtained from such theories.


Sign in / Sign up

Export Citation Format

Share Document