scholarly journals GLOBAL WELL-POSEDNESS OF THE GENERALIZED ROTATING MAGNETOHYDRODYNAMICS EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV SPACES

2020 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Muhammad Zainul Abidin ◽  
◽  
Jiecheng Chen
Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 165
Author(s):  
Muhammad Zainul Abidin ◽  
Naeem Ullah ◽  
Omer Abdalrhman Omer

We consider the Cauchy problem of the three-dimensional primitive equations of geophysics. By using the Littlewood–Paley decomposition theory and Fourier localization technique, we prove the global well-posedness for the Cauchy problem with the Prandtl number P=1 in variable exponent Fourier–Besov spaces for small initial data in these spaces. In addition, we prove the Gevrey class regularity of the solution. For the primitive equations of geophysics, our results can be considered as a symmetry in variable exponent Fourier–Besov spaces.


2020 ◽  
Vol 17 (01) ◽  
pp. 123-139
Author(s):  
Lucas C. F. Ferreira ◽  
Jhean E. Pérez-López

We show global-in-time well-posedness and self-similarity for the semilinear wave equation with nonlinearity [Formula: see text] in a time-weighted framework based on the larger family of homogeneous Besov spaces [Formula: see text] for [Formula: see text]. As a consequence, in some cases of the power [Formula: see text], we cover a initial-data class larger than in some previous results. Our approach relies on dispersive-type estimates and a suitable [Formula: see text]-product estimate in Besov spaces.


Sign in / Sign up

Export Citation Format

Share Document