Dynamics of a competing two-strain SIS epidemic model with general infection force on complex networks

2021 ◽  
Vol 59 ◽  
pp. 103247
Author(s):  
Xinxin Cheng ◽  
Yi Wang ◽  
Gang Huang
2016 ◽  
Vol 73 (5) ◽  
pp. 1227-1249 ◽  
Author(s):  
Junyuan Yang ◽  
Yuming Chen ◽  
Fei Xu

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoyan Wang ◽  
Junyuan Yang

In this paper, we propose a degree-based mean-field SIS epidemic model with a saturated function on complex networks. First, we adopt an edge-compartmental approach to lower the dimensions of such a proposed system. Then we give the existence of the feasible equilibria and completely study their stability by a geometric approach. We show that the proposed system exhibits a backward bifurcation, whose stabilities are determined by signs of the tangent slopes of the epidemic curve at the associated equilibria. Our results suggest that increasing the management and the allocation of medical resources effectively mitigate the lag effect of the treatment and then reduce the risk of an outbreak. Moreover, we show that decreasing the average of a network sufficiently eradicates the disease in a region or a country.


2014 ◽  
Vol 46 (01) ◽  
pp. 241-255 ◽  
Author(s):  
Peter Neal

We study the endemic behaviour of a homogeneously mixing SIS epidemic in a population of size N with a general infectious period, Q, by introducing a novel subcritical branching process with immigration approximation. This provides a simple but useful approximation of the quasistationary distribution of the SIS epidemic for finite N and the asymptotic Gaussian limit for the endemic equilibrium as N → ∞. A surprising observation is that the quasistationary distribution of the SIS epidemic model depends on Q only through


Sign in / Sign up

Export Citation Format

Share Document