scholarly journals Onsager algebra and algebraic generalization of Jordan-Wigner transformation

2021 ◽  
pp. 115599
Author(s):  
Kazuhiko Minami
2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Yuji Yanagihara ◽  
Kazuhiko Minami

Abstract A 1D cluster model with next-nearest-neighbor interactions and two additional composite interactions is solved; the free energy is obtained and a correlation function is derived exactly. The model is diagonalized by a transformation obtained automatically from its interactions, which is an algebraic generalization of the Jordan–Wigner transformation. The gapless condition is expressed as a condition on the roots of a cubic equation, and the phase diagram is obtained exactly. We find that the distribution of roots for this algebraic equation determines the existence of long-range order, and we again obtain the ground-state phase diagram. We also derive the central charges of the corresponding conformal field theory. Finally, we note that our results are universally valid for an infinite number of solvable spin chains whose interactions obey the same algebraic relations.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yuan Yao ◽  
Akira Furusaki

AbstractWe formulate a ℤk-parafermionization/bosonization scheme for one-dimensional lattice models and field theories on a torus, starting from a generalized Jordan-Wigner transformation on a lattice, which extends the Majorana-Ising duality atk= 2. The ℤk-parafermionization enables us to investigate the critical theories of parafermionic chains whose fundamental degrees of freedom are parafermionic, and we find that their criticality cannot be described by any existing conformal field theory. The modular transformations of these parafermionic low-energy critical theories as general consistency conditions are found to be unconventional in that their partition functions on a torus transform differently from any conformal field theory whenk >2. Explicit forms of partition functions are obtained by the developed parafermionization for a large class of critical ℤk-parafermionic chains, whose operator contents are intrinsically distinct from any bosonic or fermionic model in terms of conformal spins and statistics. We also use the parafermionization to exhaust all the ℤk-parafermionic minimal models, complementing earlier works on fermionic cases.


1980 ◽  
Vol 92 (1-2) ◽  
pp. 144-148 ◽  
Author(s):  
Dennis B. Creamer ◽  
H.B. Thacker ◽  
David Wilkinson

1987 ◽  
Vol 28 (10) ◽  
pp. 2390-2392 ◽  
Author(s):  
Joseph C. Várilly ◽  
José M. Gracia‐Bondía

Sign in / Sign up

Export Citation Format

Share Document