scholarly journals Parafermionization, bosonization, and critical parafermionic theories

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yuan Yao ◽  
Akira Furusaki

AbstractWe formulate a ℤk-parafermionization/bosonization scheme for one-dimensional lattice models and field theories on a torus, starting from a generalized Jordan-Wigner transformation on a lattice, which extends the Majorana-Ising duality atk= 2. The ℤk-parafermionization enables us to investigate the critical theories of parafermionic chains whose fundamental degrees of freedom are parafermionic, and we find that their criticality cannot be described by any existing conformal field theory. The modular transformations of these parafermionic low-energy critical theories as general consistency conditions are found to be unconventional in that their partition functions on a torus transform differently from any conformal field theory whenk >2. Explicit forms of partition functions are obtained by the developed parafermionization for a large class of critical ℤk-parafermionic chains, whose operator contents are intrinsically distinct from any bosonic or fermionic model in terms of conformal spins and statistics. We also use the parafermionization to exhaust all the ℤk-parafermionic minimal models, complementing earlier works on fermionic cases.

Universe ◽  
2018 ◽  
Vol 4 (9) ◽  
pp. 97
Author(s):  
Doron Gepner ◽  
Hervé Partouche

Every conformal field theory has the symmetry of taking each field to its adjoint. We consider here the quotient (orbifold) conformal field theory obtained by twisting with respect to this symmetry. A general method for computing such quotients is developed using the Coulomb gas representation. Examples of parafermions, S U ( 2 ) current algebra and the N = 2 minimal models are described explicitly. The partition functions and the dimensions of the disordered fields are given. This result is a tool for finding new theories. For instance, it is of importance in analyzing the conformal field theories of exceptional holonomy manifolds.


2020 ◽  
pp. 476-517
Author(s):  
Giuseppe Mussardo

The conformal transformations may be part of a larger group of symmetry. Chapter 13 discusses several of the extensions of conformal field theory, including supersymmetry, Z N transformations and current algebras. It also covers superconformal models, the Neveu–Schwarz and Ramond sectors, irreducible representations and minimal models, additional symmetry, the supersymmetric Landau–Ginzburg theory, parafermion models, the relation to lattice models, Kac–Moody algebras, Virasoro operators, the Sugawara Formula, maximal weights and conformal models as cosets. The appendix provides for the interested reader a self-contained discussion on the Lie algebras, include the dual Coxeter numbers, properties of weight vectors and roots/simple roots.


1989 ◽  
Vol 04 (11) ◽  
pp. 2653-2713 ◽  
Author(s):  
JOHN H. SCHWARZ

Various topics in conformal field theory and the theory of Kac-Moody algebras are presented. In particular, the Goddard-Kent-Olive construction is used to derive various conformal and superconformal theories, including a large class of N=2 models recently discovered by Kazama and Suzuki. The relationship between compactification of extra dimensions and the description of internal degrees of freedom by a conformal field theory is discussed. Various approaches to compactification based on exactly soluble conformal field theories, including Gepner’s proposal for using the N=2 minimal models, are sketched. Recent progress in understanding N=2 models and Calabi-Yau spaces using mathematical techniques of singularity theory is described. It is argued that a classical solution could be a useful first approximation to a quantum ground state even though it is known that string theory is strongly coupled and the perturbation expansion diverges.


1999 ◽  
Vol 14 (28) ◽  
pp. 1961-1981 ◽  
Author(s):  
SHUHEI MANO

A conformal field theory on the boundary of three-dimensional asymptotic anti-de Sitter spaces which appear as near horizon geometry of D-brane bound states is discussed. It is shown that partition functions of gravitational instantons appear as high and low temperature limits of the partition function of the conformal field theory. The result reproduces phase transition between the anti-de Sitter space and the BTZ black hole in the bulk gravity.


2003 ◽  
Vol 18 (25) ◽  
pp. 4497-4591 ◽  
Author(s):  
MICHAEL A. I. FLOHR

These are notes of my lectures held at the first School & Workshop on Logarithmic Conformal Field Theory and its Applications, September 2001 in Tehran, Iran. These notes cover only selected parts of the by now quite extensive knowledge on logarithmic conformal field theories. In particular, I discuss the proper generalization of null vectors towards the logarithmic case, and how these can be used to compute correlation functions. My other main topic is modular invariance, where I discuss the problem of the generalization of characters in the case of indecomposable representations, a proposal for a Verlinde formula for fusion rules and identities relating the partition functions of logarithmic conformal field theories to such of well known ordinary conformal field theories. The two main topics are complemented by some remarks on ghost systems, the Haldane-Rezayi fractional quantum Hall state, and the relation of these two to the logarithmic c=-2 theory.


1994 ◽  
Vol 413 (3) ◽  
pp. 614-628 ◽  
Author(s):  
Jürgen Fuchs ◽  
Doron Gepner

Sign in / Sign up

Export Citation Format

Share Document