Structural vibration monitoring and operational modal analysis of offshore wind turbine structure

2018 ◽  
Vol 150 ◽  
pp. 280-297 ◽  
Author(s):  
Xiaofeng Dong ◽  
Jijian Lian ◽  
Haijun Wang ◽  
Tongshun Yu ◽  
Yue Zhao
2013 ◽  
Vol 569-570 ◽  
pp. 652-659 ◽  
Author(s):  
Gert de Sitter ◽  
Wout Weitjens ◽  
Mahmoud El-Kafafy ◽  
Christof Devriendt

This paper will show the first results of a long term monitoring campaign on an offshore wind turbine in the Belgian North Sea. It will focus on the vibration levels and resonant frequencies of the fundamental modes of the support structure. These parameters will be crucial to minimize O&M costs and to extend the lifetime of offshore wind turbine structures. For monopile foundations for example, scouring and reduction in foundation integrity over time are especially problematic because they reduce the fundamental structural resonance of the support structure, aligning that resonance frequency more closely to the lower frequencies. Since both the broadband wave energy and the rotating frequency of the turbine are contained in this low frequency band, the lower natural frequency can create resonant behavior increasing fatigue damage. Continuous monitoring of the effect of scour on the dynamics of the wind turbine will help to optimize the maintenance activities on the scour protection system. To allow a proper continuous monitoring during operation, reliable state-of-the-art operational modal analysis techniques should be used and these are presented in this paper. The methods are also automated, so that no human-interaction is required and the system can track the natural frequencies and damping ratios in a reliable manner.


2014 ◽  
Vol 13 (6) ◽  
pp. 644-659 ◽  
Author(s):  
Christof Devriendt ◽  
Filipe Magalhães ◽  
Wout Weijtjens ◽  
Gert De Sitter ◽  
Álvaro Cunha ◽  
...  

This article will present and discuss the approach and the first results of a long-term dynamic monitoring campaign on an offshore wind turbine in the Belgian North Sea. It focuses on the vibration levels and modal parameters of the fundamental modes of the support structure. These parameters are crucial to minimize the operation and maintenance costs and to extend the lifetime of offshore wind turbine structure and mechanical systems. In order to perform a proper continuous monitoring during operation, a fast and reliable solution, applicable on an industrial scale, has been developed. It will be shown that the use of appropriate vibration measurement equipment together with state-of-the art operational modal analysis techniques can provide accurate estimates of natural frequencies, damping ratios, and mode shapes of offshore wind turbines. The identification methods have been automated and their reliability has been improved, so that the system can track small changes in the dynamic behavior of offshore wind turbines. The advanced modal analysis tools used in this application include the poly-reference least squares complex frequency-domain estimator, commercially known as PolyMAX, and the covariance-driven stochastic subspace identification method. The implemented processing strategy will be demonstrated on data continuously collected during 2 weeks, while the wind turbine was idling or parked.


2020 ◽  
Vol 30 ◽  
pp. 998-1004
Author(s):  
Hicham Boudounit ◽  
Mostapha Tarfaoui ◽  
Dennoun Saifaoui

Author(s):  
Karl O. Merz ◽  
Geir Moe ◽  
Ove T. Gudmestad

Recent and historical literature regarding hydrodynamics has been reviewed, with offshore wind turbine support structures in mind. Under conditions of separated flow, several relevant phenomena have been noted which are not covered by the commonly-used Morison equation: 1. damping of structural vibration or slow-drift motion; 2. the interaction of structural vibration and vortex shedding; 3. loads near the free-surface; and, 4. burst motions, caused by impulse-like loading from steep waves. References have been given to books and articles that describe the phenomena in more detail. A form of the Morison equation is proposed which has separate empirical coefficients for each of the velocity and acceleration terms. The coefficients can be determined from existing test data with use of least-squares error minimization. A simplified form of the equation provides a means to obtain conservative bias on both the applied load (bias towards a high drag coefficient) and damping (bias towards a low drag coefficient). Further investigation into free-surface and burst motion (ringing) phenomena is recommended, considering a slender wind turbine monotower in 20 to 50 m water depth.


Sign in / Sign up

Export Citation Format

Share Document