scholarly journals 3-D environmental extreme value models for the tension in a mooring line of a semi-submersible

2019 ◽  
Vol 184 ◽  
pp. 23-31
Author(s):  
N. Raillard ◽  
M. Prevosto ◽  
H. Pineau
Author(s):  
Jan Mathisen ◽  
Siril Okkenhaug ◽  
Kjell Larsen

A joint probabilistic model of the metocean environment is assembled, taking account of wind, wave and current and their respective heading angles. Mooring line tensions are computed in the time domain, for a large set of short-term stationary conditions, intended to span the domain of metocean conditions that contribute significantly to the probabilities of high tensions. Weibull probability distributions are fitted to local tension maxima extracted from each time series. Long time series of 30 hours duration are used to reduce statistical uncertainty. Short-term, Gumbel extreme value distributions of line tension are derived from the maxima distributions. A response surface is fitted to the distribution parameters for line tension, to allow interpolation between the metocean conditions that have been explicitly analysed. A second order reliability method is applied to integrate the short-term tension distributions over the probability of the metocean conditions and obtain the annual extreme value distribution of line tension. Results are given for the most heavily loaded mooring line in two mooring systems: a mobile drilling unit and a production platform. The effects of different assumptions concerning the distribution of wave heading angles in simplified analysis for mooring line design are quantified by comparison with the detailed calculations.


Author(s):  
Jan Mathisen ◽  
Torfinn Hørte

A probabilistic metocean model for hurricane conditions is briefly described. The model is based on site-specific, hindcast data and defines the time variation of the metocean conditions during the realisation of a hurricane at the site. The annual extreme value distribution of mooring line tension for a large, semi-submersible, mobile drilling unit is computed. Time domain analysis is applied to obtain the short-term, extreme value distribution of line tension, conditional on stationary metocean conditions. A large number of different conditions are considered. A response surface is used to interpolate on the short-term distribution parameters in order to describe the tension response during the varying conditions associated with the passage of a hurricane. The hurricane duration is split into a sequence of 15-minute intervals such that the conditions can be assumed stationary during each such short interval. The tension distribution, conditional on the realisation of a hurricane, is accumulated across the sequence of short intervals. The distribution of hurricanes is taken into account to obtain the tension distribution in a random hurricane. Finally, the frequency of hurricanes is taken into account to give the annual extreme distribution of line tension. The characteristic tension computed using 10-year return conditions and the ISO 19901-7 design standard is found to correspond to a return period of 29 years in the test case. The effects of various assumptions in the design analysis are investigated. Sensitivities to simplifications of the metocean model are considered. The effects of uncertainties in the response calculation and in the distribution of peak significant wave height during hurricanes are quantified and included in the response analysis.


Author(s):  
Siril Okkenhaug ◽  
Jan Mathisen ◽  
Torfinn Hørte

DNV is currently running a Joint Industry Project, “NorMoor JIP”, on calibration of safety factors for mooring lines together with several oil companies, engineering companies, rig-owners, manufacturers of mooring line components and Norwegian authorities. Our motivation for initiating a study on mooring line safety factors started out with questions raised with regards to the safety level given by the Norwegian regulations. However, this is equally important for other mooring regulations like ISO, API and class-regulations. What we see is that the mooring standards are interpreted and applied in different ways. The reliability level implied by the regulations is not known, and the present safety factors were set when frequency domain analysis was prevalent while time domain analysis is often applied today. DNV carried out the DeepMoor JIP [9] during 1995–2000 using frequency domain analysis and reliability-based calibration. Now, a decade later, the increase in computing capacity makes it feasible to carry out a similar calibration for time-domain analysis of the mooring systems. The objective of the project work is to investigate and compare the characteristic line tension calculated according to design standards with the annual extreme value distribution of the line tension. Further, to calibrate safety factors for mooring line design for the ultimate limit state (ULS) as a function of the target probability of failure. The original proposal for this JIP included calculations for chain and wire rope moorings on a typical drill rig and a turret moored FPSO at three different water depths at Haltenbanken. However, since this JIP has been very well received in the industry, the scope has been extended to include calculations for a production semisubmersible, for fibre rope systems and for Gulf of Mexico environmental conditions. This paper will focus on the reasons for doing this calibration study, and the importance of seeking to agree on unified calculation recipes and requirements. Preliminary results for characteristic tension and annual extreme value distributions of tension for some designs are presented and discussed. The calibration of safety factors will be carried out later in the project when all designs are finalized.


2014 ◽  
Vol 58 (3) ◽  
pp. 193-207 ◽  
Author(s):  
C Photiadou ◽  
MR Jones ◽  
D Keellings ◽  
CF Dewes

Sign in / Sign up

Export Citation Format

Share Document