hot spells
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Pedro M. Sousa ◽  
Ricardo M. Trigo ◽  
Ana Russo ◽  
João L. Geirinhas ◽  
Ana Rodrigues ◽  
...  

<p>The warmest July ever in Portugal was observed during 2020, leading to the highest number of total deaths in July months (10430) since consistent records became available in 2009. This record summed up to the very high death toll throughout the year, characterized by the COVID-19 pandemic. As a combined result of these factors, cumulated deaths during 2020 are also the largest in the records available since 2009 (123753), corresponding to an excess of ~12000 deaths (~11% above the baseline). COVID-19 was responsible for the largest fraction of anomalous mortality during the spring months (62% of the excess during March-May) and from autumn onwards (85% of the excess during October-December). However, during the warmer season, the direct impact of the pandemic decreased substantially (as in the rest of Europe) and other causes were the main trigger for the observed excessive mortality (~3500 versus 553 COVID-19 deaths). Prolonged hot spells, occurring between June 21 and August 7, triggered persistent mortality anomalies in the upper tertile (>310 deaths/day) reaching its peak in mid-July (+45% deaths/day). Two other shorter hot spells occurring outside summer months (May and September) also appear to have contributed to significant mortality anomalies.</p><p>July 2020 registered an overall temperature anomaly of +2.6ºC over continental Portugal, and a cumulated anomaly of +127ºC. The lethality rate associated to these cumulated anomalies (+14 deaths per cumulated ºC) was higher than that observed in recent relevant heat-related mortality episodes, even those with higher absolute temperature anomalies, such as in 2013 and 2018. Rates comparable to those observed in 2020 in Portugal are only found far back in tragic heatwaves like those experienced in June 1981 or August 2003. In fact, the 2003 European heatwaves triggered significant changes in public health policies, in order to minimize the mortality burden associated to hot spells, which resulted in lower lethality rates, until 2020. These results are further supported by a statistical model developed to estimate expected deaths due to cold/heat (calibrated for 2009-2019: r=0.84; ME=7%), estimating an amplification of at least 50% in heat-related deaths during 2020 compared to pre-pandemic years. We argue that the significant decrease observed in emergency admissions (ER) and disruption in health-care since the start of the pandemic helps explaining this amplification factor. A ~2/3 decrease in total ERs was observed at the peak of the COVID-19 crisis, never returning to normal pre-pandemic levels. Furthermore, in average cases classified as emergent and very urgent in triage remained below 80% of previous reference levels throughout the 2020 summer, particularly the latter.</p><p>The authors would like to acknowledge the financial support  FCT through project UIDB/50019/2020 – IDL.</p>


Urban Climate ◽  
2021 ◽  
Vol 35 ◽  
pp. 100747
Author(s):  
Yves Richard ◽  
Benjamin Pohl ◽  
Mario Rega ◽  
Julien Pergaud ◽  
Thomas Thevenin ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jose M. Barrero ◽  
Luciana Porfirio ◽  
Trijntje Hughes ◽  
Jing Chen ◽  
Shannon Dillon ◽  
...  

Abstract In the Australian wheat belts, short episodes of high temperatures or hot spells during grain filling are becoming increasingly common and have an enormous impact on yield and quality, bringing multi-billion losses annually. This problem will become recurrent under the climate change scenario that forecast increasing extreme temperatures, but so far, no systematic analysis of the resistance to hot spells has yet been performed in a diverse genetic background. We developed a protocol to study the effects of heat on three important traits: grain size, grain dormancy and the presence of Late Maturity α-Amylase (LMA), and we validated it by analysing the phenotypes of 28 genetically diverse wheat landraces and exploring the potential variability existing in the responses to hot spells. Using controlled growth environments, the different genotypes were grown in our standard conditions until 20 days after anthesis, and then moved for 10 days into a heat chamber. Our study showed that our elevated temperature treatment during mid-late filling triggered multiple detrimental effects on yield and quality. We observed a reduction in grain size, a reduction in grain dormancy and increased LMA expression in most of the tested genotypes, but potential resistant lines were identified for each analyzed trait opening new perspectives for future genetic studies and breeding for heat-insensitive commercial lines.


2020 ◽  
Author(s):  
Syed Mubashshir Ali ◽  
Olivia Martius ◽  
Matthias Röthlisberger

<p>Synoptic-scale Rossby wave-packets have a recurrent pattern during several episodes of persistent surface weather which is termed as 'recurrent Rossby wave-packets' (RRWP). They result in a statistically significant increase in winter cold and summer hot spells over large areas of the Northern Hemisphere mid-latitudes.</p><p>We present a global climatology of the RRWPs to study its spatial and seasonal variation. We also investigate the link of RRWPs to persistent surface extremes in the Southern Hemisphere (SH).  We find that RRWPs result in a statistically significant increase in winter cold and summer hot spells over broad areas in Australia and South America. Furthermore, we discuss the effects of climatological oscillations (Madden Julian Oscillation, ENSO, etc) on influencing the RRWPs.</p>


2020 ◽  
Author(s):  
Hendrik Wouters ◽  
Diego G. Miralles ◽  
Jessica Keune ◽  
Irina Y. Petrova ◽  
Adriaan J. Teuling ◽  
...  

<p>Hot extremes are typically instigated by a combination of favorable large-scale conditions and positive land surface feedbacks: as heatwaves evolve, the soil dries out and the decreased evaporation is accompanied by further heating of the atmosphere. Extreme high temperatures are known to cause increased mortality, and thus dry soils are typically thought to be associated with higher risk for human health. However, empirical studies indicate that health-threatening consequences and overall human discomfort during heatwaves not only depend on air temperature, but on air humidity as well. Drying soils are expected to reduce air humidity, which may <span>—</span> to a yet-unknown degree <span>—</span> offset the detrimental effect of soil dryness on increased temperatures in what relates to human heat discomfort. Here, we provide observational evidence for the role of anomalies in soil moisture on heat stress worldwide. We use a novel framework that combines weather balloons, reanalysis and satellite data with a mechanistic model of the atmospheric boundary layer. The health-threatening nature of hot spells is diagnosed by adopting a definition based on the concept of wet-bulb temperature and findings from recent meta-analysis of global human lethal impact data. Results indicate that the detrimental effect of drying soils on air temperature is overcompensated by the beneficial effect on reduced air humidity, which is partly related to the enhanced dry air entrainment. These findings can be used to design climate change adaptation strategies, being aware that ongoing trends in land and atmospheric dryness will impact human heat stress during future heatwaves.</p>


2019 ◽  
Vol 32 (11) ◽  
pp. 3207-3226 ◽  
Author(s):  
Matthias Röthlisberger ◽  
Linda Frossard ◽  
Lance F. Bosart ◽  
Daniel Keyser ◽  
Olivia Martius

Abstract The persistence of surface weather during several recent high-impact weather events has been pivotal in generating their societal impact. Here we examine Hovmöller diagrams of the 250-hPa meridional wind during several periods with particularly persistent surface weather and find a common pattern in these Hovmöller diagrams. This pattern can be characterized as a “recurrent Rossby wave pattern” (RRWP), arising from multiple transient synoptic-scale wave packets. During such RRWP periods, individual troughs and ridges forming the wave packets repeatedly amplify in the same geographical region. We discuss the synoptic evolution of two RRWP periods, in February–March 1987 and July–August 1994, and illustrate how the recurrence of the transient wave packets led to unusually long-lasting cold and hot spells, which occurred simultaneously in several regions, each separated by roughly one synoptic wavelength. Furthermore, a simple index termed R is proposed to identify RRWPs, which is based on both a time and wavenumber filter applied to conventional Hovmöller diagrams. A Weibull regression analysis then shows that large values of R are statistically significantly linked to increased durations of winter cold and summer hot spells in large areas of the Northern Hemisphere midlatitudes. Traditionally, persistent high-impact surface weather has often been linked to the occurrence of proximate atmospheric blocking. In contrast to blocking, RRWPs affect persistent surface temperature anomalies over multiple synoptic wavelengths. We therefore argue that, in addition to blocking, RRWPs should be considered as an important flow feature leading to persistent high-impact surface weather.


2017 ◽  
Vol 30 (13) ◽  
pp. 5041-5058 ◽  
Author(s):  
G. T. Diro ◽  
L. Sushama

Soil moisture–atmosphere interactions play a key role in modulating climate variability and extremes. This study investigates how soil moisture–atmosphere coupling may affect future extreme events, particularly the role of projected soil moisture in modulating the frequency and maximum duration of hot spells over North America, using the fifth-generation Canadian Regional Climate Model (CRCM5). With this objective, CRCM5 simulations, driven by two coupled general circulation models (MPI-ESM and CanESM2), are performed with and without soil moisture–atmosphere interactions for current (1981–2010) and future (2071–2100) climates over North America, for representative concentration pathways (RCPs) 4.5 and 8.5. Analysis indicates that, in future climate, the soil moisture–temperature coupling regions, located over the Great Plains in the current climate, will expand farther north, including large parts of central Canada. Results also indicate that soil moisture–atmosphere interactions will play an important role in modulating temperature extremes in the future by contributing more than 50% to the projected increase in hot-spell days over the southern Great Plains and parts of central Canada, especially for the RCP4.5 scenario. This higher contribution of soil moisture–atmosphere interactions to the future increases in hot-spell days for RCP4.5 is related to the fact that the projected decrease in soil moisture caused the soil to remain in a transitional regime between wet and dry state that is conducive to soil moisture–atmosphere coupling. For the RCP8.5 scenario, on the other hand, the future projected soil state over the southern United States and northern Mexico is too dry to have an impact on evapotranspiration and therefore on temperature.


Urban Science ◽  
2016 ◽  
Vol 1 (1) ◽  
pp. 3 ◽  
Author(s):  
Koen De Ridder ◽  
Bino Maiheu ◽  
Dirk Lauwaet ◽  
Ioannis Daglis ◽  
Iphigenia Keramitsoglou ◽  
...  

2016 ◽  
Vol 64 (5) ◽  
pp. 1875-1902 ◽  
Author(s):  
Joanna Struzewska ◽  
Maciej Jefimow

Science ◽  
2015 ◽  
Author(s):  
Elizabeth Pennisi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document