Time-domain prediction of the coupled cross-flow and in-line vortex-induced vibrations of a flexible cylinder using a wake oscillator model

2021 ◽  
Vol 237 ◽  
pp. 109631
Author(s):  
Yun Gao ◽  
Ganghui Pan ◽  
Shuai Meng ◽  
Lei Liu ◽  
Zecheng Jiang ◽  
...  
Author(s):  
Chongyao Zhou ◽  
Gang Xu ◽  
Zhiming Huang ◽  
Dagang Zhang ◽  
Naiquan Ye ◽  
...  

Subsea pipeline laid on the seabed will experience free span when the lay path is long and seabed is rugged. Hydrodynamic loads caused by the currents around the pipeline can induce oscillations in both cross-flow and in-line directions. This phenomenon is called vortex-induced vibration (VIV) which is the most common case that could induce serious fatigue problems. The pipe-soil interaction is one of the main factors that influence the vibration. In this paper, a study focusing on the effect of pipe-soil interaction on VIV for different types of free span is presented. The Milan wake oscillator is applied to calculate the dynamic response induced by VIV in Orcaflex, and the results are compared with experimental data to identify its validity. A sensitivity study is also performed to study the parameter influence of the Milan wake oscillator model. Four types of free span (including the multiple free spans) are modeled in Orcaflex and time domain VIV analysis is carried out to study the influence of pipe-soil interaction. Comparison among different types of free span is discussed. The influence of structural damping is studied for flexible pipe only because its influence on steel pipe is negligible. The influence of structural damping on flexible pipe is studied by means of a predefined moment-curvature curve. In addition, several cases are studied to investigate the influence of tension on VIV by Milan wake oscillator.


2021 ◽  
Vol 80 ◽  
pp. 103078
Author(s):  
Yun Gao ◽  
Zhuangzhuang Zhang ◽  
Ganghui Pan ◽  
Geng Peng ◽  
Lei Liu ◽  
...  

Author(s):  
Yahya Modarres-Sadeghi ◽  
Franz S. Hover ◽  
Michael S. Triantafyllou

Vortex induced vibrations of long distributed structures (risers and mooring cables) is an inherently complicated phenomenon in which due to the riser multi-mode excitations, various combinations of traveling and standing wave patterns along the length is observed. These observations are made based on a series of model scale experiments conducted on a riser for both uniform and linearly sheared flow cases. In these model scale experiments, strain and acceleration measurements are conducted at selected points along the riser. The contour plots of amplitudes of oscillations in these experiments show a mainly traveling wave behavior for linearly sheared flow cases and a mainly standing wave one for the uniform flow cases. In order to model the vortex induced vibrations of the riser used in these experiments, a wake oscillator model is used. In this model, the riser is assumed to be a tensioned string and the wake dynamics is represented by a Van der Pol oscillator whose driving force is in parallel with the riser acceleration. Randomness in the current, added mass and lift coefficients is taken into account by considering random parameters for the wake oscillator model. By using the proper parameters in this wake oscillator model, its results can be compared with the experimental ones. The comparison is made in terms of dynamical behavior (traveling waves versus standing waves, amplitudes and frequencies of oscillations) as well as the fatigue life calculations. The statistics of fatigue life calculations based on the experimental reconstruction compares well with those of the model results showing that the theoretical model can predict fatigue damage of the riser fairly well.


Sign in / Sign up

Export Citation Format

Share Document