vortex induced vibrations
Recently Published Documents


TOTAL DOCUMENTS

787
(FIVE YEARS 173)

H-INDEX

51
(FIVE YEARS 7)

2022 ◽  
Vol 245 ◽  
pp. 110535
Author(s):  
Jian Gu ◽  
Antonio Carlos Fernandes ◽  
Xiangxi Han ◽  
Xiaofeng Kuang ◽  
Wei Chen

Author(s):  
Yoshiki Nishi ◽  
Yuga Shigeyoshi

Abstract Purpose This study aims to understand the vibratory response of a circular cylinder placed in proximity to other fixed bodies. Methods A circular cylinder model was placed in a circulating water channel and was supported elastically to vibrate in the water. Another two circular cylinders were fixed upstream of the vibrating cylinder. The temporal displacement variations of the vibrating cylinder were measured and processed by a frequency analysis. Results When the inline spacings were small, two amplitude peaks appeared in the reduced velocity range 3.0–13.0. When the inline spacings were large, the amplitude response showed a single peak. Conclusion For small inline spacings, the first peak was attributed to high-amplitude vibrations forced by Karman vortex streets shed from the upstream cylinders. The second peak arose from interactions of the wakes of the upstream cylinder with the vibrating cylinder. When the inline spacing increased, the vortex-induced vibrations resembled those of an isolated cylinder.


2022 ◽  
pp. 181-199
Author(s):  
Hassan Elahi ◽  
Marco Eugeni ◽  
Paolo Gaudenzi

2021 ◽  
Vol 12 (1) ◽  
pp. 242
Author(s):  
Guohui Zhao ◽  
Zhichao Wang ◽  
Shuo Zhu ◽  
Jianming Hao ◽  
Jun Wang

This paper investigated the aerodynamic response features of an asymmetric cable-stayed bridge. The wind resistance design parameters for judging the response were first determined, afterwards the bridge dynamic characteristics were analyzed for subsequent aerodynamic analysis. The vortex-induced vibrations (VIV) and flutter response at various wind fairing angles were then examined by using a 1:50 sectional model in the wind tunnel test. Finally, a 1:150 full bridge aeroelastic model was employed to explore the aerodynamic stability and characteristics of the whole asymmetric bridge under different wind attack angles in various flow fields. The results show that the sharp wind fairings could reduce the VIV amplitude of the steel box girder cable-stayed bridge to some extent, and the example bridge has examined to have enough flutter stability through sectional and full bridge aeroelastic model wind tunnel tests. Unlike symmetric bridges, the bridge’s maximum displacement of first torsion mode shape is at the closure rather than the mid-span, which is the essential reason to lead this unique vibration feature. The results from the present study could highlight the important effect of structural asymmetry and fairing shape to the wind-induced bridge vibration and hence may facilitate more appropriate wind design of asymmetric cable-stayed bridges.


Sign in / Sign up

Export Citation Format

Share Document