Volume 5: Materials Technology; CFD and VIV
Latest Publications


TOTAL DOCUMENTS

100
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

Published By ASMEDC

9780791848227

Author(s):  
Hideaki Murayama ◽  
Kazuro Kageyama ◽  
Kohei Ohara ◽  
Kiyoshi Uzawa ◽  
Makoto Kanai ◽  
...  

Defects and damage in a structural joint can trigger a critical degradation or collapse of the structure. Among joints, welded joints have many uncertainties, such as remaining stress, initial defects, and heat-affected zone. Such uncertainties in a welded joint can also induce a strain fluctuation, when they are subjected to a load. Conversely, the strain fluctuation along the weld line may represent the presence of uncertainties in the welded joint. This means that monitoring strain distribution along the weld line can be good way to assess their integrity and improve reliability of the structure. We have developed a novel distributed strain measurement technique which can measure strain distributions along fiber Bragg gratings (FBG) in an optical fiber and has the high spatial resolution and we applied it to strain monitoring of a welded tubular joint. The spatial resolution o is less than 1 mm and it was confirmed by measurement simulations and experiments. Then, we measured the strain distributions along the weld line of the tubular joint of a steel pipe subjected to a tensile load by the developed measurement system. We could successfully measure the development of the strain distribution along the weld line, where the sharply fluctuating strain distributions resulting from some defects were observed. In this paper, we describe the measurement principle and performance of the optical fiber sensor, and then show the results of strain monitoring in the welded joint.



Author(s):  
Martin Hukle ◽  
Brian Newbury ◽  
Dan Lillig ◽  
Jonathan Regina ◽  
Agnes Marie Horn

The intelligent design of a given pipeline system intended for operation beyond the elastic limit should incorporate specific features into both the base material (line pipe) and girth weld that enable the affected system to deform safely into the plastic regime within the intended strain demand limits. The current paper focuses on the mechanical properties known to influence the strain capacity of the base material (i.e., line pipe steel independent of the girth weld). Line pipe mechanical properties of interest include: longitudinal yield strength, tensile strength, yield to tensile strength ratio, reduction of area, elongation and uniform elongation. Of particular interest (in consideration of the conventional thermally applied corrosion protection coating systems to be employed), are the longitudinal mechanical properties in the “aged” condition. The present study investigates six (6) different pipeline steels encompassing grades X60 (415 MPa) to X100 (690 MPa), and includes both UOE Submerged Arc Welded - Longitudinal (SAW-L) and seamless (SMLS) forming methods.



Author(s):  
Wangwen Zhao ◽  
Richard Turner ◽  
Jian Liang

Under seismic loading, structural hot spots can experience very high levels of stress and many random stress reversals. Conventional stress based methods cannot assess the failure state in detail when stress is beyond the elastic limit and nominal stress reversals are more than double the yield stress. A method has been created to fully reproduce the true stress/ strain history by using 1) generalised Masing’s rule with equivalent cyclic energy dissipation to model cyclic stress/strain relation, 2) Neuber’s method to calculate inelastic strain concentration factor, and 3) relative effective notch factor determined from comparing S-N curves of different joint classes. From this reproduced strain history, strain cycles can be counted and low cycle fatigue analysis can be conducted by using Miner’s rule and by estimating damage from the strain based failure criteria such as Coffin-Mason method. This method has been implemented in a numeric procedure and coded in a FORTRAN program called CYSTRA (as for CYclic STRain Analysis). It takes input of “nominal” random stress history directly from general structural software, linear or non-linear, local or global, and calculates extreme strain and strain cycles at multiple hot spots for the whole structure efficiently. Thus it greatly facilitates failure assessment for offshore structures which can have a large number of hot spots within the structure, unlike mechanical devices commonly assessed in strain based analysis where detailed FE based methods can be used.



Author(s):  
Inge Lotsberg

For fatigue design it is necessary to provide guidelines on how to calculate fatigue damage at weld toes based on S-N data when the principal stress direction is different from that of the normal direction to the weld toe. Such stress conditions are found at details in different types of plated structures. Some different fatigue criteria for these stress conditions are presented in design standards on fatigue design. Criteria used by the International Institute of Welding (IIW), Eurocode, British Standard and in the DNV standards have been assessed against some relevant fatigue test data presented in the literature. Only proportional loading conditions have been considered here. (By proportional loading is understood that the principal stress direction is kept constant during a load cycle). An alternative equation for calculation of an equivalent or effective stress range based on stress normal to the weld toe and shear stress at the weld toe has been proposed. The proposed methodology can be used for nominal S-N curves and it can be used together with a hot spot stress S-N curve with stresses read out from finite element analysis. The different design criteria are presented in this paper together with recommendations on analysis procedure.



Author(s):  
C. F. G. Baxter

Grades 23 and 29 titanium alloys are becoming more commonly used offshore for critical components of riser systems. Many of these components, such as compact flanges, operate at high mean strains due to make-up loads, often close to or above yield. Hitherto, weld fatigue data collected at low mean strains have been used for prediction of fatigue lives of such components. However, these analyses have resulted in short but adequate lives. The objective of this work was, therefore, to derive fatigue data that could be applied to components operating at high strains and over a large range of stress ratios. This necessitated strain-controlled fatigue testing. Cyclic material properties evaluated from the tests are presented. In addition, it was found that sustained strain load, a type of stress relaxation that, unlike normal stress relaxation, does not require elevated temperatures, affected the cyclic behavior It also affects the distribution of make up stresses. This phenomenon was also investigated and it was shown that the cyclic stress/strain curve, readily derived from strain-controlled fatigue tests, accounted for sustained strain load effects.



Author(s):  
Susan B. Swithenbank ◽  
Carl Martin Larsen

Most empirical codes for prediction of vortex-induced vibrations (VIV) has so far been limited to cross-flow response. The reason for this is that cross-flow amplitudes are normally larger that in-line amplitudes. Additionally the in-line response is considered to be driven by the cross-flow vibrations. However since the in-line frequency is twice the cross-flow frequency, fatigue damage from in-line vibrations may become as important and even exceed the damage from cross-flow vibrations. A way to predict in-line vibrations is to apply traditional methods that are used for cross-flow VIV and establish an empirical relationship between the cross-flow and in-line response. Previous work suggests that the ratio between the in-line and cross-flow amplitudes depends on the cross-flow mode number, Baarhom et al. (2004), but the empirical basis for this hypothesis is not strong. The motivation for the present work has been to verify or modify this hypothesis by extensive analysis of observed response. The present analysis uses complex data from experiments with wide variations in the physical parameters of the system, including length-to-diameter ratios from 82 to 4236, tension dominated natural frequencies and bending stiffness dominated natural frequencies, sub-critical and critical Reynolds numbers, different damping coefficients, uniform and sheared flows, standing wave and traveling wave vibrations, mode numbers from 1–25th, and different mass ratios. The conclusion from this work is that the cross-flow mode number is not the important parameter, but whether the frequency of vibration in the cross-flow direction is dominated by bending stiffness of tension.



Author(s):  
Balasubramanyam Sasanapuri

Virtual Model Basin (VMB) developed based on RANS CFD Approach along with VOF model to simulate free-surface has been used to perform benchmark studies and the results are presented in this paper. The VMB based on general purpose CFD solver ANSYS FLUENT has been used to simulate resistance and diffraction problems for a Navy surface combatant hull and the results are validated against experimental data. The resistance simulations are done to assess two turbulence models and best among the two is used to solve the diffraction problem. The validation results suggest that the VMB approach reproduces the flow features, forces and moments accurately.



Author(s):  
Garth Prentice ◽  
Steve Alderton ◽  
Zhenzeng Tang

This paper describes two proven methods in nondestructive evaluation of Inconel clad steel catenary risers — Automated Ultrasonic Testing (AUT) and Real-time Radiography (RTR). The history of development, qualification and implementation of these two methods are discussed in detail in this paper.



Author(s):  
Halvor Lie ◽  
Carl M. Larsen ◽  
Karl Erik Kaasen

This paper describes a new model for prediction of fatigue damage from VIV in risers. The method will overcome some of the shortcomings of previous methods. A fully 3D model is proposed, “cross-flow” and “in-line” response are predicted, response at higher order harmonic components will be added, and the stochastic nature of the response is accounted for by introducing a time varying envelope function combined with “time sharing” between dominating response frequencies. A model that reflects this behaviour is considered to be more realistic and is more likely to predict lower fatigue damage than the traditional discrete-frequency models. The model will predict a response that will appear as a combination of standing and travelling waves depending on boundary conditions, damping and load distribution. Fatigue damage will therefore become more evenly distributed along the riser, and less concentrated at anti-nodes for (dominating modes) than seen from traditional discrete frequency models. The proposed model needs empirical coefficients for simultaneous IL and CF response. In principle this requires a data base of added mass, excitation and damping coefficients for varying flow conditions and response frequencies, combinations of response amplitudes in both directions, varying phase between the two response components and even the presence of higher order motion components. Such data do not exist. We have therefore proposed to use the limited information we have on this matter at present. Future improvement of the model might therefore be possible if more data becomes available. The new model will be implemented in the VIVANA program and the enhancement of the code is in progress. The paper will present the background of the model, the basic assumption of the new model and a comparison between preliminary results obtained from a preliminary code and model test results. The cases include both 2D uniform current conditions and 3D (non-uniform) current conditions.



Author(s):  
Sanjay P. Singh ◽  
Anant Lal ◽  
Sharad S. Dhavalikar

The present work is about the estimation of sloshing loads in partially filled tanks of a ship for design purpose. Two oil tankers of different dimensions were taken for this study. Ship motions for several wave-heading angles were computed using potential flow solver. Relevant period for sloshing was determined based on the seakeeping analysis. Critical fill levels of the tanks (with respect to sloshing) were identified from all possible set of motions. The numerical simulation of tank fluid motions for critical fill level was performed, using general fluid flow solver, ANSYS CFX. Prior to applying the method to ship tanks a validation study was carried out. The method was validated against the experimental results obtained by Hinatsu et al. (2001). Pressures at various locations of the tank were computed and were compared with the Common Structural Rules for Oil Tankers (CSR). Pressure time history obtained from computational fluid dynamics (CFD) simulations was applied on the tank bulkhead to get the structural response, using ANSYS Mechanical.



Sign in / Sign up

Export Citation Format

Share Document