Predictive optimization algorithm for beam combination systems based on adaptive fiber optics collimators

2022 ◽  
Vol 148 ◽  
pp. 106753
Author(s):  
Guan Huang ◽  
Guoyun Lv ◽  
Yangyu Fan ◽  
Chao Geng ◽  
Xinyang Li
1995 ◽  
Vol 166 ◽  
pp. 362-362
Author(s):  
Peiqian Zhao ◽  
V. Coudé Du Foresto ◽  
J.-M. Mariotti ◽  
P. Lena ◽  
Bifang Zhou

Long baseline optical interferometry has been successfully employed to measure the diameters of stars. In this technique, bandwidth smearing can affect the measurement accuracy. These bandwidth smearing effects can be, to some extent, eliminated by dividing the whole observing spectral band into sub-bands and calculating the star's diameter based on the visibilities and spatial frequencies at the corresponding sub-bands. In the visible range, dividing the whole spectral band can be implemented by introducing a spectrograph, while in the IR domain, this operation can be performed efficiently with the technique of double Fourier interferometry (DFI) without losing the advantage of multiplexing. In particular, the use of IR single-mode fiber optics for DFI will make the interferometer extremely compact, light, insensitive to surrounding conditions, etc. We established an IR single-mode fiber optic double Fourier interferometer in the laboratory, in which the optical path difference modulations are generated by stretching fiber arms and the beam combination is carried out with a fiber optic directional coupler. In this paper, we report on experiments and experimental results from measurements of the diameter of an artificial star with the technique of fiber optic DFI.


2014 ◽  
Vol 22 (25) ◽  
pp. 31520 ◽  
Author(s):  
Dong Zhi ◽  
Pengfei Ma ◽  
Yanxing Ma ◽  
Xiaolin Wang ◽  
Pu Zhou ◽  
...  

2018 ◽  
Vol 10 (6) ◽  
pp. 1-13
Author(s):  
Guan Huang ◽  
Chao Geng ◽  
Feng Li ◽  
Jiaying Liu ◽  
Xinyang Li

2011 ◽  
Vol 284 (24) ◽  
pp. 5531-5536 ◽  
Author(s):  
Chao Geng ◽  
Xinyang Li ◽  
Xiaojun Zhang ◽  
Changhui Rao

Author(s):  
James F. Mancuso ◽  
William B. Maxwell ◽  
Russell E. Camp ◽  
Mark H. Ellisman

The imaging requirements for 1000 line CCD camera systems include resolution, sensitivity, and field of view. In electronic camera systems these characteristics are determined primarily by the performance of the electro-optic interface. This component converts the electron image into a light image which is ultimately received by a camera sensor.Light production in the interface occurs when high energy electrons strike a phosphor or scintillator. Resolution is limited by electron scattering and absorption. For a constant resolution, more energy deposition occurs in denser phosphors (Figure 1). In this respect, high density x-ray phosphors such as Gd2O2S are better than ZnS based cathode ray tube phosphors. Scintillating fiber optics can be used instead of a discrete phosphor layer. The resolution of scintillating fiber optics that are used in x-ray imaging exceed 20 1p/mm and can be made very large. An example of a digital TEM image using a scintillating fiber optic plate is shown in Figure 2.


1984 ◽  
Author(s):  
Dorothy L. Finley ◽  
Irving N. Alderman ◽  
M. Sue Bogner ◽  
Nancy B. Mitchell
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document