scholarly journals The influence of radiation on MHD boundary layer flow past a nano fluid wedge embedded in porous media

Author(s):  
N. Amar ◽  
N. Kishan
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Wubshet Ibrahim ◽  
Ayele Tulu

The problem of two-dimensional steady laminar MHD boundary layer flow past a wedge with heat and mass transfer of nanofluid embedded in porous media with viscous dissipation, Brownian motion, and thermophoresis effect is considered. Using suitable similarity transformations, the governing partial differential equations have been transformed to nonlinear higher-order ordinary differential equations. The transmuted model is shown to be controlled by a number of thermophysical parameters, viz. the pressure gradient, magnetic, permeability, Prandtl number, Lewis number, Brownian motion, thermophoresis, and Eckert number. The problem is then solved numerically using spectral quasilinearization method (SQLM). The accuracy of the method is checked against the previously published results and an excellent agreement has been obtained. The velocity boundary layer thickness reduces with an increase in pressure gradient, permeability, and magnetic parameters, whereas thermal boundary layer thickness increases with an increase in Eckert number, Brownian motion, and thermophoresis parameters. Greater values of Prandtl number, Lewis number, Brownian motion, and magnetic parameter reduce the nanoparticles concentration boundary layer.


2015 ◽  
Vol 11 (4) ◽  
pp. 5094-5107
Author(s):  
Hadibandhu Pattnayak ◽  
Rojali Mohapatra

Magnetohydrodynamics (MHD) boundary layer flow past a wedge with the influence of thermal radiation, heat generation and chemical reaction has been analyzed in the present study. This model used for the momentum, temperature and concentration fields. The principal governing equations is based on the velocity  in a nanofluid and with a parallel free stream velocity and surface temperature and concentration. The governing nonlinear boundary layer equations for momentum, thermal energy and concentration are transformed to a system of nonlinear ordinary coupled differential equations by using suitable similarity transformation with fitting boundary conditions. The transmuted model is shown to be controlled by a number of thermo-physical parameters, viz. the magnetic parameter, buoyancy parameter, radiation conduction parameter, heat generation parameter, Porosity parameter, Dufour number, Prandtl number, Lewis number, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter and pressure gradient parameter. Numerical elucidations are obtained with the legendary Nactsheim-Swigert shooting technique together with RungeKutta six order iteration schemes.


Author(s):  
N. Amar, Et. al.

In this investigation the steady of laminar magnetohydrodynamic(MHD) heat and mass transfer two dimensional boundary layer nanofluid flow past a wedge embedded in a porous media in the availability of the viscous dissipation, thermophoresis and Brownian motion effects are taken into account. With the assistance of the similarity transformation, the governing partial differential equations (PDE) are transformed into nonlinear ordinary differential equations (ODE). The solution of the problem is solved numerically by using the MATLAB in built package solver bvp4c. The method's accuracy is examined against recently discussed results and outstanding agreement was reached. The impacts of the pertinent flow parameters are examined through graphs and tabular form.


Sign in / Sign up

Export Citation Format

Share Document