moving surface
Recently Published Documents


TOTAL DOCUMENTS

418
(FIVE YEARS 68)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Sanil Shah

Abstract Numerical study of heat transfer between circular jet arrays and the flat moving surface is carried out. Two jet patterns: inline and staggered, are chosen. Total nine circular jets are used in both jet patterns. The analysis is carried out for steady-state and transient conditions with the turbulent flow of jet fluid. In steady-state analysis, the influence of surface motion on the flow field and heat transfer by the array of jets is analyzed. The surface-to-jet velocity ratio (r) varies from 0 to 2. In transient analysis, the effect of jet pattern on the cooling of hot moving plate is analyzed. The two-equation shear stress transport (SST) k-? turbulence model is used for solving Reynolds averaged Navier-Stokes (RANS) equations of conservation of mass, momentum, and energy for incompressible turbulent flow. The steady-state analysis shows that surface motion has a significant effect on the flow field and heat transfer. The transient analysis results show that a staggered jet pattern cools the plate more uniformly than an inline jet pattern.


2022 ◽  
pp. 225-253
Author(s):  
John H. Merkin ◽  
Ioan Pop ◽  
Yian Yian Lok ◽  
Teodor Grosan

Author(s):  
Reza Azadi ◽  
David S. Nobes

The examples of flow conditions, where an object of a fixed or deformable body moves in a fluid, or the interface between the flow phases instantaneously changes its topology, are numerous in industry and natural sciences. The advent of particle image velocimetry (PIV) [1] and particle tracking velocimetry (PTV) [2] enabled the measurement of the instantaneous velocity fields in these types of complicated flow fields. As a next step, several methodologies have been developed in the past decade to calculate the pressure fields from PIV or PTV data [3,4]. These methods were developed based on the assumption of a stationary flow domain, with surface boundaries that are fixed and independent of time. This makes the current pressure calculation methods inapplicable to a flow domain with deformable moving surface boundaries. Also, for most of the two-phase flows, the capillary forces are significant and the pressure drop over the two-phase interface must be considered. Therefore, the current pressure calculators require an improvement in the formulation of the algorithms to account for the deformable volume conditions and the effect of the surface tension force. For the calculation of pressure from sparse PTV velocity data, firstly, a tessellation method is required to interconnect the irregularly spaced vectors in the flow field using a highquality mesh grid. The mesh must be dynamic and adjust itself to the moving boundaries. This tessellation method has already been developed by the current authors [5]. As the next step, equations of motion for a deformable C.V. need to be coupled with the tessellation method to calculate the instantaneous pressures in a two-phase flow field, with a moving interface, which will be the ultimate goal of the current study.


Author(s):  
Matthew Singbeil ◽  
Calin Ghiroaga ◽  
Chris Morton ◽  
Robert Martinuzzi

The effect of actuation frequency, using moving surface actuation, is investigated for a square cylinder bluff body wake. Pressure sensor data are used to optimize actuation characteristics through the implementation of an NSGA-II evolutionary algorithm. Velocity field data are obtained using Particle Image Velocimetry (PIV) for baseline and optimized actuation cases. A Proper Orthogonal Decomposition (POD) analysis shows that the vortex shedding frequency shifts between frequencies associated with the actuation, moving between regions of lock-on and quasi-periodicity. Additionally, the POD shows that the energy contained in the coherent shedding motion is reduced through actuation, while the total energy in the velocity field stays relatively constant. A reconstruction of the first 10 POD modes indicates that the coherent contribution to the Reynolds stresses significantly decreases compared to the non-actuated case. The mechanism for drag reduction is investigated using the shed circulation flux and Kochin’s drag formulation model. The drag obtained using PIV measurements and Kochin’s formulation is consistent with trends observed for the base pressure as a function of actuation frequency.


Author(s):  
Falana Ayodeji ◽  
Babatope. O Pele

The problem of laminar boundary layer flow of power-law fluid over a continuous moving surface in the presence of a transverse magnetic field with velocity slip was investigated. The governing partial differential equations for the flow and heat transfer were transformed into non-linear ordinary differential equations using the similarity method. These equations were solved numerically by applying the fourth-order Runge-Kutta method with a shooting technique. The solution is found to be dependent on various parameters such as power-law index, magnetic field parameter, suction, and injection parameters. The effect of various flow parameters in the form of dimensionless quantities on the flow field is discussed and graphically presented. It was observed that an increase in the magnetic property results to a decrease flow of fluid velocity and also, an increase in the Prandtl number results to an increase in the rate of heat transfer.


Sign in / Sign up

Export Citation Format

Share Document