Glacial morphology and sediment formation in the Mertz Trough, East Antarctica

2006 ◽  
Vol 231 (1-2) ◽  
pp. 169-180 ◽  
Author(s):  
Katherine McMullen ◽  
Eugene Domack ◽  
Amy Leventer ◽  
Caroline Olson ◽  
Robert Dunbar ◽  
...  
2011 ◽  
Vol 5 (3) ◽  
pp. 551-560 ◽  
Author(s):  
J. L. Roberts ◽  
R. C. Warner ◽  
D. Young ◽  
A. Wright ◽  
T. D. van Ommen ◽  
...  

Abstract. Ice thickness data over much of East Antarctica are sparse and irregularly distributed. This poses difficulties for reconstructing the homogeneous coverage needed to properly assess underlying sub-glacial morphology and fundamental geometric constraints on sea level rise. Here we introduce a new physically-based ice thickness interpolation scheme and apply this to existing ice thickness data in the Aurora Subglacial Basin region. The skill and robustness of the new reconstruction is demonstrated by comparison with new data from the ICECAP project. The interpolated morphology shows an extensive marine-based ice sheet, with considerably more area below sea-level than shown by prior studies. It also shows deep features connecting the coastal grounding zone with the deepest regions in the interior. This has implications for ice sheet response to a warming ocean and underscores the importance of obtaining additional high resolution data in these marginal zones for modelling ice sheet evolution.


2011 ◽  
Vol 5 (1) ◽  
pp. 655-684 ◽  
Author(s):  
J. L. Roberts ◽  
R. C. Warner ◽  
D. Young ◽  
A. Wright ◽  
T. D. van Ommen ◽  
...  

Abstract. Ice thickness data over much of East Antarctica are sparse and irregularly distributed. This poses difficulties for reconstructing the homogeneous coverage needed to properly assess underlying sub-glacial morphology and fundamental geometric constraints on sea level rise. Here we introduce a new physically-based ice thickness interpolation scheme and apply this to existing ice thickness data in the Aurora Subglacial Basin region. The skill and robustness of the new reconstruction is demonstrated by comparison with new data from the ICECAP project. The interpolated morphology shows an extensive marine-based ice sheet, with considerably more area below sea-level than shown by prior studies. It also shows deep features connecting the coastal grounding zone with the deepest regions in the interior. This has implications for ice sheet response to a warming ocean and underscores the importance of obtaining additional high resolution data in these marginal zones for modelling ice sheet evolution.


2011 ◽  
Vol 45 ◽  
pp. 32-49
Author(s):  
R. M. Gogorev ◽  
Z. V. Pushina

The richest diatom complexes have revealed due to the study of glacial-marine sediments sampled in the Fisher Massif (Prince Charles Mountains, East Antarctica) during 52nd and 53rd Russian Antarctic Expeditions (Polar Marine Geol. Survey Expedition) in 2006/07 and 2007/08. Three diatom complexes are distinguished according to different palaeoecological conditions: the planktonic one is located in the basis of the outcrop, while mixed planktonic-benthic and benthic ones being located above. The planktonic diatom complexes are dominated by two oceanic species Actinocyclus ingens (up to 8%) and Denticulopsis simonseni (up to 80%). There are 15 planktonic algae, e. g. Eucampia аntarctica, Fragilariopsis spp., Rhizosolenia spp., Rouxia antarctica, Podosira antarctica sp. nov., Stellarima microtrias; and also unknown and non-described benthic diatoms Achnanthes sp., Cocconeis spp., Rhabdonema (s. l.) spp. and Synedra (s. l.) spp. Detailed data on morphology and taxonomy of 10 centric diatoms are presented, including 3 newly described species.


2019 ◽  
Vol 486 (1) ◽  
pp. 98-102
Author(s):  
N. M. Sushchevskaya ◽  
B. V. Belyatsky ◽  
G. L. Leitchenkov ◽  
V. G. Batanova ◽  
A. V. Sobolev

Mesozoic dikes associated with the Karoo plume were studied within the East Antarctica where at Queen Maud Land on the Almannryggen massif high-Ti magnesian Fe-basalts were found. It is assumed that such basalts originate by means of the pyroxenite-containing mantle melting. The isotopic characteristics of the studied dolerites reflect the composition of the pyroxenite source - the ancient oceanic lithosphere (ЕМI), submerged at the mantle depths of 150-170 km in the paleosubduction zone of the Gondwanian continent and transformed 180 m.y. ago into the pyroxenite melt when interacting with the plume mantle peridotite.


1982 ◽  
Vol 3 ◽  
pp. 32-35 ◽  
Author(s):  
R. L. Brooks

During the operational lifetime of the Seasat altimeter from 3 July to 10 October 1978, more than 450 overflights were made over East Antarctica inland to latitude 72°S. An analysis of selected passes over a variety of ice features demonstrates that the oceanographic altimeter performed surprisingly well over the ice sheet and ice shelves, acquiring useful measurements during approximately 70% of each pass. The altimeter's onboard tracking system dampened out the ice-surface elevations, but post-flight retracking of the stored return waveforms reveals excellent ice-surface details. After waveform retracking, the altimeter repeatability is better than ±1 m.


1990 ◽  
Vol 8 (2) ◽  
pp. 99-126 ◽  
Author(s):  
Y. Ohta ◽  
B. O. Tørudbakken ◽  
K. Shiraishi

Sign in / Sign up

Export Citation Format

Share Document