plume magmatism
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Tania Martins ◽  
Nicole Rayner ◽  
David Corrigan ◽  
Paul Kremer

The collaborative federal-provincial Southern Indian Lake project in north-central Manitoba covered an area of more than 3500 km2 of the Trans-Hudson orogen. Regional-scale geological mapping, sampling, and lithogeochemical, isotopic and geochronological studies resulted in the identification of distinct assemblages of supracrustal rocks and varied episodes of plutonism. A granodiorite gneiss dated at ca. 2520 Ma is interpreted to represent the basement of the Southern Indian domain and is considered a separate crustal domain, named the Partridge Breast block. The Churchill River assemblage is composed of juvenile pillow basalt with intervening clastic sedimentary rocks, possibly a reflection of plume magmatism related to initial rifting of the Hearne craton margin. The Pukatawakan Bay assemblage consists mainly of massive to pillowed, juvenile metabasaltic rocks and associated basinal metasedimentary rocks. The Partridge Breast Lake assemblage is dominated by continental-arc volcanic and volcaniclastic rocks associated with basinal metasedimentary rocks. The Strawberry Island assemblage, consisting of arenite and polymictic conglomerate, is interpreted to have been deposited in a foreland-basin basin or intra-orogen pull-apart basin environment. The Whyme Bay assemblage is characterized by fluvial-alluvial orogenic sediments and is temporally linked to the Sickle Group rocks in the Lynn Lake greenstone belt. Granitoid rocks, dominantly monzogranite and granodiorite, range in age from ca. 1890 to 1830 Ma and occur throughout the Southern Indian domain, and intermediate and mafic intrusions of similar ages are also present. In this paper we integrate these new data into a tectonic framework for the Southern Indian domain of the Trans-Hudson orogen in Manitoba.


Petrology ◽  
2021 ◽  
Vol 29 (5) ◽  
pp. 528-560
Author(s):  
Yu. V. Karyakin ◽  
E. V. Sklyarov ◽  
A. V. Travin

2021 ◽  
pp. 1-16
Author(s):  
Xiu-Quan Miao ◽  
Yi-Xin Liu ◽  
Yi-Wei Liu ◽  
Jin-Rong Wang ◽  
Jian-Lin Chen

Abstract The North Qilian Orogenic Belt is surrounded by the Tarim Craton to the NW and the North China Craton to the NE. The Precambrian continental crust remnants that are distributed in the North Qilian Orogenic Belt are termed the North Qilian Block (NQB), and their tectonic evolution has profound implications for the evolution of the Columbia Supercontinent. Here we present major- and trace-element and Sr–Nd–Hf isotope data for (meta-) basalts from the Beidahe Group (BDHG) and Zhulongguan Group (ZLGG) in the western North Qilian Orogenic Belt, to investigate the tectonic evolution of the NQB during the Proterozoic Eon. The protoliths of Palaeoproterozoic amphibole gneisses and plagioclase amphibolites from the BDHG are calc-alkaline series basalts. These metabasalts show island-arc-basalt affinities with variable Nd and Hf isotopes (ϵNd(t) = −5.0–0.6 and 2.7–4.3; ϵHf(t) = −14.2–2.0 and 6.9–8.8) and were generated by partial melting of the asthenospheric mantle that was metasomatized by aqueous fluid and sediment melt in a continental-arc setting. The early Mesoproterozoic ZLGG basalts show features of shoshonite-series basalts and are geochemically similar to ocean-island basalts. These basalts show variable (87Sr/86Sr)i, ϵNd(t) and ϵHf(t) values of 0.70464–0.70699, −1–2.6 and −1.5–5.7, and are products of mantle plume magmatism that participated with subducted oceanic crust in an intracontinental rift setting. This study suggests that the NQB underwent tectonic evolution from palaeo-oceanic subduction to intracontinental rifting during the Palaeoproterozoic–Mesoproterozoic eras. Furthermore, the above tectonomagmatic events were in response to convergence–splitting events of the Columbia Supercontinent during the Palaeoproterozoic–Mesoproterozoic eras.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 571
Author(s):  
Valery A. Vernikovsky ◽  
Antonina Vernikovskaya ◽  
Vasilij Proskurnin ◽  
Nikolay Matushkin ◽  
Maria Proskurnina ◽  
...  

We present new structural, petrographic, geochemical and geochronological data for the late Paleozoic–early Mesozoic granites and associated igneous rocks of the Taimyr Peninsula. It is demonstrated that large volumes of granites were formed due to the oblique collision of the Kara microcontinent and the Siberian paleocontinent. Based on U-Th-Pb isotope data for zircons, we identify syncollisional (315–282 Ma) and postcollisional (264–248 Ma) varieties, which differ not only in age but also in petrochemical and geochemical features. It is also shown that as the postcollisional magmatism was coming to an end, Siberian plume magmatism manifested in the Kara orogen and was represented by basalts and dolerites of the trap formation (251–249 Ma), but also by differentiated and individual intrusions of monzonites, quartz monzonites and syenites (Early–Middle Triassic) with a mixed crustal-mantle source. We present a geodynamic model for the formation of the Kara orogen and discuss the relationship between collisional and trap magmatism.


2019 ◽  
Vol 489 (3) ◽  
pp. 281-285
Author(s):  
N. L. Dobretsov ◽  
S. M. Zhmodik ◽  
E. V. Lazareva ◽  
A. V. Tolstov ◽  
D. K. Belyanin ◽  
...  

In the north of the Siberian Platform, east of the Anabar Shield, several identified massifs of alkaline rocks with carbonatites are known: Tomtorsky, Bogdo, Promezhutochniy, as well as Bualkalakh, Chuempe, Uele, which are projected according to geophysical data and forming a large alkaline-carbonatite province. The first data on the composition of alkaline rocks of the Bogdo massif were obtained, which correspond to a group of feldspathic rocks of the main composition: rischorrites, biotite-aegirine libenerite syenites, carbonatized, with symplectites and nepheline-feldspar aggregates, pseudo-leucite nepheline syenites. Sphenes were extracted from various types of rocks of the Bogdo massif and their U-Pb age was determined using the SHRIMP-II secondary-ion microprobe. The calculated U-Pb age corresponds to 394,4 3,2 Ma, which is close to the age stage established for the Tomtor massif and the age of the rocks of the Kola alkaline province. One of the reasons for the manifestation of alkaline plume magmatism in this territory may be the influence of the peripheral zone Africa Large Low Shear Velocity Province (Tuzo) in the Baltic and Siberia during the Devonian era.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamed Gamal EL Dien ◽  
Luc S. Doucet ◽  
Zheng-Xiang Li ◽  
Grant Cox ◽  
Ross Mitchell

AbstractPlate tectonics and mantle plumes are two of the most fundamental solid-Earth processes that have operated through much of Earth history. For the past 300 million years, mantle plumes are known to derive mostly from two large low shear velocity provinces (LLSVPs) above the core-mantle boundary, referred to as the African and Pacific superplumes, but their possible connection with plate tectonics is debated. Here, we demonstrate that transition elements (Ni, Cr, and Fe/Mn) in basaltic rocks can be used to trace plume-related magmatism through Earth history. Our analysis indicates the presence of a direct relationship between the intensity of plume magmatism and the supercontinent cycle, suggesting a possible dynamic coupling between supercontinent and superplume events. In addition, our analysis shows a consistent sudden drop in MgO, Ni and Cr at ~3.2–3.0 billion years ago, possibly indicating an abrupt change in mantle temperature at the start of global plate tectonics.


2019 ◽  
Vol 486 (1) ◽  
pp. 98-102
Author(s):  
N. M. Sushchevskaya ◽  
B. V. Belyatsky ◽  
G. L. Leitchenkov ◽  
V. G. Batanova ◽  
A. V. Sobolev

Mesozoic dikes associated with the Karoo plume were studied within the East Antarctica where at Queen Maud Land on the Almannryggen massif high-Ti magnesian Fe-basalts were found. It is assumed that such basalts originate by means of the pyroxenite-containing mantle melting. The isotopic characteristics of the studied dolerites reflect the composition of the pyroxenite source - the ancient oceanic lithosphere (ЕМI), submerged at the mantle depths of 150-170 km in the paleosubduction zone of the Gondwanian continent and transformed 180 m.y. ago into the pyroxenite melt when interacting with the plume mantle peridotite.


2019 ◽  
Vol 486 (1) ◽  
pp. 529-532 ◽  
Author(s):  
N. M. Sushchevskaya ◽  
B. V. Belyatsky ◽  
G. L. Leitchenkov ◽  
V. G. Batanova ◽  
A. V. Sobolev

LITOSFERA ◽  
2018 ◽  
pp. 692-705 ◽  
Author(s):  
Viktor N. Puchkov

The plume-dependent magmatism is widespread and well justified. The bulk of it is represented by flood basalts, basalts of oceanic islands (OIB), and basalts of oceanic plateaus (OPB), though the whole scope of plume magmatism is very diverse. A noticeable role among them is played also by acid (silicic) magmatic rocks - rhyolites and granites. Two main types of plume magmatism are recognized. The first belongs to Large Igneous Provinces (LIP) and is thought to be born at the Core-Mantle boundary within structures, called superswells, that produce giant, short-living mantle upwellings, resulting in abundant volcanism on the Earth’s surface. The second type is represented by linear volcanic chains characterized by regular age progressions. They are formed by single plumes - thin ascending mantle flows, acting during longer periods of time. It is shown that the abundance of silicic magmatism strongly depends on the type of the earth’s crust. Among flood basalts of continents, silicic magmatism is usually present, subordinate in volume to basalts and belongs to a bimodal type of magmatism. But in some cases LIP in continents are formed predominantly by silicic rocks; they are given the name Silicic LIPS, or SLIPS. In oceans, LIP are fundamentally basaltic with no considerable volume of silicic volcanics, if any. The time-progressive volcanic chains in continents are rare and usually comprise a noticeable silicic component. In oceans, the chains are composed mostly of basalts (OIB type), though in the top parts of volcanoes more acid and alkaline differentiates are present; usually they lack rhyolites and granites, except the cases of a presence of some strips of continental crust or anomalously thick oceanic crust. This review can lead to a thought of an important role of melting of continental crust in formation of plume-dependent rhyolite-granite magmatism. As for the Urals, the proofs for a presence of plume-dependent magmatism in its history were presented only recently. Among the plume episodes, some are characterized by presence of silicic components, in particular: Mashak (1380-1385 Ma), Igonino (707-732 Ma), Man’khambo (mainly Cambrian), Ordovician Kidryasovo, Stepninsky (Permian) and Urals-Siberian (Triassic).


Sign in / Sign up

Export Citation Format

Share Document