Miocene pinhole borer ambrosia beetles, Diapus n. spp. (Coleoptera: Curculionidae: Platypodinae)

Palaeoworld ◽  
2021 ◽  
Author(s):  
Mónica M. Solórzano-Kraeme ◽  
Jörg U. Hammel ◽  
Robin Kunz ◽  
Chunpeng Xu ◽  
Anthony I. Cognato
Keyword(s):  
EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 7
Author(s):  
Demian F. Gomez ◽  
Jiri Hulcr ◽  
Daniel Carrillo

Invasive species, those that are nonnative and cause economic damage, are one of the main threats to ecosystems around the world. Ambrosia beetles are some of the most common invasive insects. Currently, severe economic impacts have been increasingly reported for all the invasive shot hole borers in South Africa, California, Israel, and throughout Asia. This 7-page fact sheet written by Demian F. Gomez, Jiri Hulcr, and Daniel Carrillo and published by the School of Forest Resources and Conservation describes shot hole borers and their biology and hosts and lists some strategies for prevention and control of these pests. http://edis.ifas.ufl.edu/fr422


Author(s):  
Antonio Gugliuzzo ◽  
Peter H. W. Biedermann ◽  
Daniel Carrillo ◽  
Louela A. Castrillo ◽  
James P. Egonyu ◽  
...  

AbstractWe provide an overview of both traditional and innovative control tools for management of three Xylosandrus ambrosia beetles (Coleoptera: Curculionidae: Scolytinae), invasive species with a history of damage in forests, nurseries, orchards and urban areas. Xylosandrus compactus, X. crassiusculus and X. germanus are native to Asia, and currently established in several countries around the globe. Adult females bore galleries into the plant xylem inoculating mutualistic ambrosia fungi that serve as food source for the developing progeny. Tunneling activity results in chewed wood extrusion from entry holes, sap outflow, foliage wilting followed by canopy dieback, and branch and trunk necrosis. Maintaining plant health by reducing physiological stress is the first recommendation for long-term control. Baited traps, ethanol-treated bolts, trap logs and trap trees of selected species can be used to monitor Xylosandrus species. Conventional pest control methods are mostly ineffective against Xylosandrus beetles because of the pests’ broad host range and rapid spread. Due to challenges with conventional control, more innovative control approaches are being tested, such as the optimization of the push–pull strategy based on specific attractant and repellent combinations, or the use of insecticide-treated netting. Biological control based on the release of entomopathogenic and mycoparasitic fungi, as well as the use of antagonistic bacteria, has yielded promising results. However, these technologies still require validation in real field conditions. Overall, we suggest that management efforts should primarily focus on reducing plant stress and potentially be combined with a multi-faceted approach for controlling Xylosandrus damage.


Sign in / Sign up

Export Citation Format

Share Document