scholarly journals Comparative study of well soaking timing (pre vs. post flowback) for water blockage removal from matrix-fracture interface

Petroleum ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 286-292 ◽  
Author(s):  
Nur Wijaya ◽  
James J. Sheng
Author(s):  
Sean Sanguinito ◽  
Patricia Cvetic ◽  
Angela Goodman ◽  
Barbara Kutchko ◽  
Sittichai Natesakhawat

2014 ◽  
Vol 668-669 ◽  
pp. 1488-1492
Author(s):  
Fang Qi Zhou

Considering the discontinuities of the phase saturations and pressure gradients at the matrix-fracture interface, a modified algorithm for the embedded discrete fracture model is proposed. In this algorithm, the exchange rate between fracture and matrix on two sides of the interface are calculated separately. To avoid the problem for defining the physical variables on the matrix grid blocks overlaid by fracture, the Neumann boundary conditions are instead in the calculations of other matrix grid blocks. The numerical examples show that the simulation results of the proposed algorithm agree very well with those of the discrete fracture model. In reservoir with high matrix capillary pressure, the grids must be enough refined in the neighborhood of the matrix-fracture interface to achieve high numerical accuracy.


2015 ◽  
Author(s):  
Tadesse Weldu Teklu ◽  
Najeeb Alharthy ◽  
Waleed Alameri ◽  
Hossein Kazemi ◽  
Ramona M. Graves

SPE Journal ◽  
2017 ◽  
Vol 22 (03) ◽  
pp. 950-970 ◽  
Author(s):  
Ali Zidane ◽  
Abbas Firoozabadi

Summary Compositional two-phase flow in fractured media has wide applications, including carbon dioxide (CO2) injection in the subsurface for improved oil recovery and for CO2 sequestration. In a recent work, we used the fracture-crossflow-equilibrium (FCFE) approach in single-phase compressible flow to simulate fractured reservoirs. In this work, we apply the same concept in compositional two-phase flow and show that we can compute all details of two-phase flow in fractured media with a central-processing-unit (CPU) time comparable with that of homogeneous media. Such a high computational efficiency is dependent on the concept of FCFE, and the implicit solution of the transport equations in the fractures to avoid the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. The implicit solution of two-phase compositional flow in fractures has some challenges that do not appear in single-phase flow. The complexities arise from the upstreaming of the derivatives of the molar concentration of component i in phase α(cα,i) with respect to the total molar concentration (ci) when several fractures intersect at one interface. In addition, because of gravity, countercurrent flow may develop, which adds complexity when using the FCFE concept. We overcome these complexities by providing an upstreaming technique at the fracture/fracture interface and the matrix/fracture interface. We calculate various derivatives at constant volume V and temperature T by performing flash calculations in the fracture elements and the matrix domain to capture the discontinuity at the matrix/fracture interface. We demonstrate in various examples the efficiency and accuracy of the proposed algorithm in problems of various degrees of complexity in eight-component mixtures. In one example with 4,300 elements (1,100 fracture elements), the CPU time to 1 pore volume injection (PVI) is approximately 3 hours. Without the fractures, the CPU time is 2 hours and 28 minutes. In another example with 7,200 elements (1,200 fracture elements), the CPU time is 4 hours and 8 minutes; without fractures in homogeneous media, the CPU time is 2 hours and 53 minutes.


Author(s):  
Sean Sanguinito ◽  
Patricia Cvetic ◽  
Barbara Kutchko ◽  
Sittichai Natesakhawat ◽  
Angela Goodman

2020 ◽  
Author(s):  
Bruno Oliveira Ferreira de Souza ◽  
Éve‐Marie Frigon ◽  
Robert Tremblay‐Laliberté ◽  
Christian Casanova ◽  
Denis Boire

Sign in / Sign up

Export Citation Format

Share Document