homogeneous media
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 47)

H-INDEX

34
(FIVE YEARS 4)

Polymer ◽  
2022 ◽  
pp. 124526
Author(s):  
Jessica P.M. Ribeiro ◽  
Patrícia V. Mendonça ◽  
Daniela Santo ◽  
Francesco De Bon ◽  
Henrique Faneca ◽  
...  
Keyword(s):  

Author(s):  
Vito G. Daniele ◽  
Guido Lombardi

In this work, we introduce a general method to deduce spectral functional equations in elasticity and thus, the generalized Wiener–Hopf equations (GWHEs), for the wave motion in angular regions filled by arbitrary linear homogeneous media and illuminated by sources localized at infinity. The work extends the methodology used in electromagnetic applications and proposes for the first time a complete theory to get the GWHEs in elasticity. In particular, we introduce a vector differential equation of first-order characterized by a matrix that depends on the medium filling the angular region. The functional equations are easily obtained by a projection of the reciprocal vectors of this matrix on the elastic field present on the faces of the angular region. The application of the boundary conditions to the functional equations yields GWHEs for practical problems. This paper extends and applies the general theory to the challenging canonical problem of elastic scattering in angular regions.


Author(s):  
Rainer Mandel ◽  
Robert Schippa

AbstractWe solve time-harmonic Maxwell’s equations in anisotropic, spatially homogeneous media in intersections of $$L^p$$ L p -spaces. The material laws are time-independent. The analysis requires Fourier restriction–extension estimates for perturbations of Fresnel’s wave surface. This surface can be decomposed into finitely many components of the following three types: smooth surfaces with non-vanishing Gaussian curvature, smooth surfaces with Gaussian curvature vanishing along one-dimensional submanifolds but without flat points, and surfaces with conical singularities. Our estimates are based on new Bochner–Riesz estimates with negative index for non-elliptic surfaces.


Geophysics ◽  
2021 ◽  
pp. 1-45
Author(s):  
Qingjie Yang ◽  
Bing Zhou ◽  
Mohamed Kamel Riahi ◽  
Mohammad Al-Khaleel

We present a simple yet effective transform function to convert 3D point-source seismic data to equivalent 2D line-source data, which is required when applying efficient 2D migration and full-waveform inversion to field data collected along a line. By numerically comparing the 3D and corresponding 2D Green’s tensors in various media, the phase shift around 45° and the offset amplitude compensation factor, as well as small fluctuations of the amplitude ratios are observed in all nonzero components of the wave-equation solutions. Based on these observations, we derive a transform function comprised of (1) a simple filter for compensating amplitude and phase shift, and (2) stretching scalars for scaling amplitude differences for different components. We employ the 3D and 2D analytical wave solutions in various homogeneous media to demonstrate the accuracy of the proposed transform function, and then apply it to a heterogeneous, viscoelastic, anisotropic model and a modified Marmousi model. All of these results indicate that the proposed transform function is applicable for the conversion of point-source data to equivalent line-source data for imaging 2D subsurface structure.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012007
Author(s):  
I N Pavlov ◽  
I V Platonova ◽  
I L Raskovskaya ◽  
G M Yanina

Abstract Mathematical models of propagation of Gaussian, collimated and structured laser beams in transparent optically homogeneous media in the presence of curved interfaces are presented. Experimental techniques which are used for reconstruction of the interfaces profiles are described.


Author(s):  
Babita Bisht ◽  
Priyank Bhardwaj ◽  
Manoj Giri ◽  
Sanjay Pant

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1932
Author(s):  
José Julio Conde Mones ◽  
Emmanuel Roberto Estrada Aguayo ◽  
José Jacobo Oliveros Oliveros ◽  
Carlos Arturo Hernández Gracidas ◽  
María Monserrat Morín Castillo

This paper presents a stable method for the identification of sources located on the separation interface of two homogeneous media (where one of them is contained by the other one), from measurement yielded by those sources on the exterior boundary of the media. This is an ill-posed problem because numerical instability is presented, i.e., minimal errors in the measurement can result in significant changes in the solution. To obtain the proposed stable method the identification problem is categorized into three subproblems, two of which present numerical instability and regularization methods must be applied to obtain their solution in a stable form. To manage the numerical instability due to the ill-posedness of these subproblems, the Tikhonov regularization and sequential smoothing methods are used. We illustrate this methodology in a circular and irregular region to demonstrate the feasibility of the proposed method, which yields convergent and stable solutions for input data with and without noise.


Author(s):  
V. G. Daniele ◽  
G. Lombardi

In this work, we introduce a general method to deduce spectral functional equations and, thus, the generalized Wiener–Hopf equations (GWHEs) for wave motion in angular regions filled by arbitrary linear homogeneous media and illuminated by sources localized at infinity with application to electromagnetics. The functional equations are obtained by solving vector differential equations of first order that model the problem. The application of the boundary conditions to the functional equations yields GWHEs for practical problems. This paper shows the general theory and the validity of GWHEs in the context of electromagnetic applications with respect to the current literature. Extension to scattering problems by wedges in arbitrarily linear media in different physics will be presented in future works.


Author(s):  
J. Tielke ◽  
M. Maas ◽  
M. Castillo ◽  
K. Rezwan ◽  
M. Avila

Nanofluids are suspensions of nanoparticles in a base heat-transfer liquid. They have been widely investigated to boost heat transfer since they were proposed in the 1990s. We present a statistical correlation analysis of experimentally measured thermal conductivity of water-based nanofluids available in the literature. The influences of particle concentration, particle size, temperature and surfactants are investigated. For specific particle materials (alumina, titania, copper oxide, copper, silica and silicon carbide), separate analyses are performed. The conductivity increases with the concentration in qualitative agreement with Maxwell’s theory of homogeneous media. The conductivity also increases with the temperature (in addition to the improvement due to the increased conductivity of water). Surprisingly, only silica nanofluids exhibit a statistically significant effect of the particle size, whereby smaller particles lead to faster heat transfer. Overall, the large scatter in the experimental data prevents a compelling, unambiguous assessment of these effects. Taken together, the results of our analysis suggest that more comprehensive experimental characterizations of nanofluids are necessary to estimate their practical potential.


Sign in / Sign up

Export Citation Format

Share Document