The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion

2012 ◽  
Vol 133 (2) ◽  
pp. 230-255 ◽  
Author(s):  
Koen Raedschelders ◽  
David M. Ansley ◽  
David D.Y. Chen
1995 ◽  
Vol 269 (3) ◽  
pp. H888-H901 ◽  
Author(s):  
H. S. Huang ◽  
H. L. Pan ◽  
G. L. Stahl ◽  
J. C. Longhurst

Activation of cardiac sympathetic afferents leads to excitatory cardiovascular reflexes and pain during myocardial ischemia. We hypothesized that cardiac sympathetic afferents are activated by reactive oxygen species produced during ischemia and reperfusion. Single-unit nerve activity of 55 afferents was recorded from the left paravertebral sympathetic chain (T1-T4) in cats anesthetized with alpha-chloralose. Receptive fields of all afferents were located on the right or left ventricle. Mechanical and chemical sensitivities of each afferent ending were evaluated by von Frey hairs, cardiac distension, and local application of bradykinin (BK, 142 pmol) or H2O2 (7.5-15 mumol) to the receptive field. Thirty-one afferents (56%) were responsive to bradykinin (BK), H2O2, and ischemia (2 or 10 min). Deferoxamine (Def, 10-100 mg/kg), dimethylthiourea (DMTU, 10-100 mg/kg), or iron-loaded Def (10 mg/kg) were employed to evaluate the role of H2O2 and hydroxyl radicals (.OH) in activating these afferents (10A delta and 21C fibers) during ischemia and reperfusion. Treatment with the nonspecific scavenger DMTU (n = 10) significantly diminished the increase in discharge activity evoked by ischemia and reperfusion. Treatment with Def also significantly attenuated the responses during ischemia and reperfusion. Thus reactive oxygen species, particularly .OH, activate a group of cardiac sympathetic A delta- and C-fiber afferents during myocardial ischemia and reperfusion and may play an important role in mediating cardiovascular sympathetic reflex responses and/or pain transmission.


1995 ◽  
Vol 268 (5) ◽  
pp. H2114-H2124 ◽  
Author(s):  
H. S. Huang ◽  
G. L. Stahl ◽  
J. C. Longhurst

We have shown previously that reactive oxygen species stimulate abdominal sympathetic afferents to cause reflex cardiovascular activation. Because myocardial ischemia and reperfusion also generate reactive oxygen species, we investigated the possibility that cardiovascular reflexes could be induced by topical application of H2O2 to the anterior or posterior ventricular surface in cats anesthetized with alpha-chloralose. Mean arterial pressure (MAP), heart rate (HR), left ventricular (LV) pressure, aortic flow (AF), and first derivative of LV pressure at 40 mmHg developed pressure (LV dP/dt40) were monitored. H2O2 (44 and 130 mumol) significantly increased MAP but not HR or LV dP/dt40 in intact cats (n = 8). Application of H2O2 (44 mumol) significantly increased MAP (129 +/- 9 to 152 +/- 10 mmHg), HR (240 +/- 11 to 245 +/- 10 beats/min), AF (191 +/- 13 to 212 +/- 17 ml/min), total peripheral resistance (0.68 +/- 0.13 to 0.73 +/- 0.04 peripheral resistance units), and LV dP/dt40 (2,666 +/- 145 to 3,012 +/- 205 mmHg/s) after bilateral cervical vagotomy (n = 6). These H2O2-induced excitatory responses were abolished after bilateral T1-T4 ganglionectomy. In six additional cats, H2O2 (44 mumol) significantly decreased MAP (114 +/- 5 to 102 +/- 5 mmHg), HR (207 +/- 7 to 190 +/- 7 beats/min), and LV dP/dt40 (2,776 +/- 168 to 2,600 +/- 153 mmHg/s) after sympathectomy. These depressor responses were eliminated after vagotomy. The magnitude of the cardiovascular reflexes was increased or decreased in a dose-dependent fashion in vagotomized or sympathectomized cats, respectively, over a range of 440 nmol to 44 mumol H2O2. Application of H2O2 to the anterior or posterior ventricular surface resulted in similar pressor or depressor reflexes. Dimethylthiourea and deferoxamine abolished pressor or depressor responses evoked by H2O2 in both vagotomized (n = 8) and sympathectomized (n = 8) cats. We conclude that reactive oxygen species, particularly the hydroxyl radical, can participate in activating cardiac afferents responsible for reflex cardiovascular responses during myocardial ischemia and reperfusion. An inhibitory reflex is transmitted through vagal afferents, whereas an excitatory reflex is conducted by sympathetic cardiac afferents.


The eff ect of the non-opiate analog of leu-enkephalin (peptide NALE: Phe – D – Ala – Gly – Phe – Leu – Arg) on the reactive oxygen species generation in the heart of albino rats in the early postnatal period was studied. Peptide NALE was administered intraperitoneally in the dose of 100 μ/kg daily from 2 to 6 days of life. Reactive oxygen species generation was assessed by chemiluminescence in the heart homogenates of 7-day-old animals. Decreasing of reactive oxygen species generation nearly by 30 % and an increasing in antioxidant system activity by the 20-27 %, compared with the control parameters, were found. The antioxidant eff ect of peptide NALE is associated with the presence of the amino acid Arg in the structure of the peptide. An analogue of NALE peptide, devoid of Arg (peptide Phe – D – Ala – Gly – Phe – Leu – Gly), had a signifi cant lower antioxidant eff ect. The NO-synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) in the dose 50 mg/kg, administered with NALE peptide, reduced the severity of the NALE antioxidant eff ect. The results of the study suggest that the pronounced antioxidant eff ect of NALE peptide in the heart of albino rats, at least in part, is due to the interaction with the nitric oxide system.


2020 ◽  
Vol 16 ◽  
Author(s):  
Andrey Krylatov ◽  
Leonid Maslov ◽  
Sergey Y. Tsibulnikov ◽  
Nikita Voronkov ◽  
Alla Boshchenko ◽  
...  

: There is considerable evidence in the heart that autophagy in cardiomyocytes is activated by hypoxia/reoxygenation (H/R) or in hearts by ischemia/reperfusion (I/R). Depending upon the experimental model and duration of ischemia, increases in autophagy in this setting maybe beneficial (cardioprotective) or deleterious (exacerbate I/R injury). Aside from the conundrum as to whether or not autophagy is an adaptive process, it is clearly regulated by a number of diverse molecules including reactive oxygen species (ROS), various kinases, hydrogen sulfide (H2S) and nitric oxide (NO). The purpose this review is to address briefly the controversy regarding the role of autophagy in this setting and to examine a variety of disparate molecules that are involved in its regulation.


Sign in / Sign up

Export Citation Format

Share Document