A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process

2018 ◽  
Vol 509 ◽  
pp. 921-936 ◽  
Author(s):  
Weiming Wang ◽  
Yongli Cai ◽  
Zuqin Ding ◽  
Zhanji Gui
2011 ◽  
Vol 71 (3) ◽  
pp. 876-902 ◽  
Author(s):  
A. Gray ◽  
D. Greenhalgh ◽  
L. Hu ◽  
X. Mao ◽  
J. Pan

2021 ◽  
Author(s):  
Xingzhi Chen ◽  
Baodan Tian ◽  
Xin Xu ◽  
Ruoxi Yang ◽  
Shouming Zhong

Abstract This paper studies a stochastic differential equation SIS epidemic model, disturbed randomly by the mean-reverting Ornstein-Uhlenbeck process and Brownian motion. We prove the existence and uniqueness of the positive global solutions of the model and obtain the controlling conditions for the extinction and persistence of the disease. The results show that when the basic reproduction number Rs0 < 1, the disease will extinct, on the contrary, when the basic reproduction number Rs0 > 1, the disease will persist. Furthermore, we can inhibit the outbreak of the disease by increasing the intensity of volatility or decreasing the speed of reversion ϑ, respectively. Finally, we give some numerical examples to verify these results.


2020 ◽  
Vol 61 ◽  
pp. C1-C14
Author(s):  
Hidekazu Yoshioka ◽  
Yumi Yoshioka

We propose and analyse a new stochastic competing two-species population dynamics model. Competing algae population dynamics in river environments, an important engineering problem, motivates this model. The algae dynamics are described by a system of stochastic differential equations with the characteristic that the two populations are competing with each other through the environmental capacities. Unique existence of the uniformly bounded strong solution is proven and an attractor is identified. The Kolmogorov backward equation associated with the population dynamics is formulated and its unique solvability in a Banach space with a weighted norm is discussed. Our mathematical analysis results can be effectively utilized for a foundation of modelling, analysis, and control of the competing algae population dynamics. References S. Cai, Y. Cai, and X. Mao. A stochastic differential equation SIS epidemic model with two correlated brownian motions. Nonlin. Dyn., 97(4):2175–2187, 2019. doi:10.1007/s11071-019-05114-2. S. Cai, Y. Cai, and X. Mao. A stochastic differential equation SIS epidemic model with two independent brownian motions. J. Math. Anal. App., 474(2):1536–1550, 2019. doi:10.1016/j.jmaa.2019.02.039. U. Callies, M. Scharfe, and M. Ratto. Calibration and uncertainty analysis of a simple model of silica-limited diatom growth in the Elbe river. Ecol. Mod., 213(2):229–244, 2008. doi:10.1016/j.ecolmodel.2007.12.015. M. G. Crandall, H. Ishii, and P. L. Lions. User's guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc., 27(1):229–244, 1992. doi:10.1090/S0273-0979-1992-00266-5. N. H. Du and V. H. Sam. Dynamics of a stochastic Lotka–Volterra model perturbed by white noise. J. Math. Anal. App., 324(1):82–97, 2006. doi:10.1016/j.jmaa.2005.11.064. P. Grandits, R. M. Kovacevic, and V. M. Veliov. Optimal control and the value of information for a stochastic epidemiological SIS model. J. Math. Anal. App., 476(2):665–695, 2019. doi:10.1016/j.jmaa.2019.04.005. B. Horvath and O. Reichmann. Dirichlet forms and finite element methods for the SABR model. SIAM J. Fin. Math., 9(2):716–754, 2018. doi:10.1137/16M1066117. J. Hozman and T. Tichy. DG framework for pricing european options under one-factor stochastic volatility models. J. Comput. Appl. Math., 344:585–600, 2018. doi:10.1016/j.cam.2018.05.064. G. Lan, Y. Huang, C. Wei, and S. Zhang. A stochastic SIS epidemic model with saturating contact rate. Physica A, 529(121504):1–14, 2019. doi:10.1016/j.physa.2019.121504. J. L. Lions and E. Magenes. Non-homogeneous Boundary Value Problems and Applications (Vol. 1). Springer Berlin Heidelberg, 1972. doi:10.1007/978-3-642-65161-8. J. Lv, X. Zou, and L. Tian. A geometric method for asymptotic properties of the stochastic Lotka–Volterra model. Commun. Nonlin. Sci. Numer. Sim., 67:449–459, 2019. doi:10.1016/j.cnsns.2018.06.031. S. Morin, M. Coste, and F. Delmas. A comparison of specific growth rates of periphytic diatoms of varying cell size under laboratory and field conditions. Hydrobiologia, 614(1):285–297, 2008. doi:10.1007/s10750-008-9513-y. B. \T1\O ksendal. Stochastic Differential Equations. Springer Berlin Heidelberg, 2003. doi:10.1007/978-3-642-14394-6. O. Oleinik and E. V. Radkevic. Second-order Equations with Nonnegative Characteristic Form. Springer Boston, 1973. doi:10.1007/978-1-4684-8965-1. S. Peng. Nonlinear Expectations and Stochastic Calculus under Uncertainty: with Robust CLT and G-Brownian Motion. Springer-Verlag Berlin Heidelberg, 2019. doi:10.1007/978-3-662-59903-7. T. S. Schmidt, C. P. Konrad, J. L. Miller, S. D. Whitlock, and C. A. Stricker. Benthic algal (periphyton) growth rates in response to nitrogen and phosphorus: parameter estimation for water quality models. J. Am. Water Res. Ass., 2019. doi:10.1111/1752-1688.12797. Y. Toda and T. Tsujimoto. Numerical modeling of interspecific competition between filamentous and nonfilamentous periphyton on a flat channel bed. Landscape Ecol. Eng., 6(1):81–88, 2010. doi:10.1007/s11355-009-0093-4. H. Yoshioka, Y. Yaegashi, Y. Yoshioka, and K. Tsugihashi. Optimal harvesting policy of an inland fishery resource under incomplete information. Appl. Stoch. Models Bus. Ind., 35(4):939–962, 2019. doi:10.1002/asmb.2428.


2015 ◽  
Vol 47 (2) ◽  
pp. 476-505
Author(s):  
Amarjit Budhiraja ◽  
Vladas Pipiras ◽  
Xiaoming Song

The infinite source Poisson arrival model with heavy-tailed workload distributions has attracted much attention, especially in the modeling of data packet traffic in communication networks. In particular, it is well known that under suitable assumptions on the source arrival rate, the centered and scaled cumulative workload input process for the underlying processing system can be approximated by fractional Brownian motion. In many applications one is interested in the stabilization of the work inflow to the system by modifying the net input rate, using an appropriate admission control policy. In this paper we study a natural family of admission control policies which keep the associated scaled cumulative workload input asymptotically close to a prespecified linear trajectory, uniformly over time. Under such admission control policies and with natural assumptions on arrival distributions, suitably scaled and centered cumulative workload input processes are shown to converge weakly in the path space to the solution of a d-dimensional stochastic differential equation driven by a Gaussian process. It is shown that the admission control policy achieves moment stabilization in that the second moment of the solution to the stochastic differential equation (averaged over the d-stations) is bounded uniformly for all times. In one special case of control policies, as time approaches ∞, we obtain a fractional version of a stationary Ornstein-Uhlenbeck process that is driven by fractional Brownian motion with Hurst parameter H > ½.


2015 ◽  
Vol 47 (02) ◽  
pp. 476-505
Author(s):  
Amarjit Budhiraja ◽  
Vladas Pipiras ◽  
Xiaoming Song

The infinite source Poisson arrival model with heavy-tailed workload distributions has attracted much attention, especially in the modeling of data packet traffic in communication networks. In particular, it is well known that under suitable assumptions on the source arrival rate, the centered and scaled cumulative workload input process for the underlying processing system can be approximated by fractional Brownian motion. In many applications one is interested in the stabilization of the work inflow to the system by modifying the net input rate, using an appropriate admission control policy. In this paper we study a natural family of admission control policies which keep the associated scaled cumulative workload input asymptotically close to a prespecified linear trajectory, uniformly over time. Under such admission control policies and with natural assumptions on arrival distributions, suitably scaled and centered cumulative workload input processes are shown to converge weakly in the path space to the solution of a d-dimensional stochastic differential equation driven by a Gaussian process. It is shown that the admission control policy achieves moment stabilization in that the second moment of the solution to the stochastic differential equation (averaged over the d-stations) is bounded uniformly for all times. In one special case of control policies, as time approaches ∞, we obtain a fractional version of a stationary Ornstein-Uhlenbeck process that is driven by fractional Brownian motion with Hurst parameter H &gt; ½.


2017 ◽  
Vol 33 (4) ◽  
pp. 2317-2327 ◽  
Author(s):  
Zhiming Li ◽  
Yuhong Sheng ◽  
Zhidong Teng ◽  
Hui Miao

Sign in / Sign up

Export Citation Format

Share Document