scholarly journals Hyperuniformity of expected equilibrium density distributions of Brownian particles via designer external potentials

Author(s):  
Yang Jiao
Author(s):  
D. G. Chase ◽  
W. Winters ◽  
L. Piko

Although the outlines of human adenovirus entry and uncoating in HeLa cells has been clarified in recent electron microscope studies, several details remain unclear or controversial. Furthermore, morphological features of early interactions of human adenovirus with non-permissive mouse cells have not been extensively documented. In the course of studies on the effects of human adenoviruses type 5 (AD-5) and type 12 on cultured preimplantation mouse embryos we have examined virus attachment, entry and uncoating. Here we present the ultrastructural findings for AD-5.AD-5 was grown in HeLa cells and purified by successive velocity gradient and equilibrium density gradient centrifugations in CsCl. After dialysis against PBS, virus was sedimented and resuspended in embryo culture medium. Embryos were placed in culture at the 2-cell stage in Brinster's medium.


1998 ◽  
Vol 77 (5) ◽  
pp. 1277-1281
Author(s):  
Alexander M. Berezhkovskii, Veaceslav Zaloj,

2016 ◽  
Vol 186 (2) ◽  
pp. 113-124 ◽  
Author(s):  
Alexander N. Vulfson ◽  
Oleg O. Borodin
Keyword(s):  

2020 ◽  
Author(s):  
Denis Artiukhin ◽  
Patrick Eschenbach ◽  
Johannes Neugebauer

We present a computational analysis of the asymmetry in reaction center models of photosystem I, photosystem II, and bacteria from <i>Synechococcus elongatus</i>, <i>Thermococcus vulcanus</i>, and <i>Rhodobacter sphaeroides</i>, respectively. The recently developed FDE-diab methodology [J. Chem. Phys., 148 (2018), 214104] allowed us to effectively avoid the spin-density overdelocalization error characteristic for standard Kohn–Sham Density Functional Theory and to reliably calculate spin-density distributions and electronic couplings for a number of molecular systems ranging from dimeric models in vacuum to large protein including up to about 2000 atoms. The calculated spin densities showed a good agreement with available experimental results and were used to validate reaction center models reported in the literature. We demonstrated that the applied theoretical approach is very sensitive to changes in molecular structures and relative orientation of molecules. This makes FDE-diab a valuable tool for electronic structure calculations of large photosynthetic models effectively complementing the existing experimental techniques.


1992 ◽  
Vol 7 (3) ◽  
pp. 121-125 ◽  
Author(s):  
Claire Schaffnit ◽  
Jacques Silvy ◽  
C. T.J. Dodson

1989 ◽  
Vol 177 ◽  
Author(s):  
D. J. Pine ◽  
D. A. Weitz ◽  
D. J. Durian ◽  
P. N. Pusey ◽  
R. J. A. Tough

ABSTRACTOn a short time scale, Brownian particles undergo a transition from initially ballistic trajectories to diffusive motion. Hydrodynamic interactions with the surrounding fluid lead to a complex time dependence of this transition. We directly probe this transition for colloidal particles by measuring the autocorrelation function of multiply scattered light and observe the effects of the slow power-law decay of the velocity autocorrelation function.


2020 ◽  
Vol 500 (1) ◽  
pp. 1054-1070
Author(s):  
Luca Ciotti ◽  
Antonio Mancino ◽  
Silvia Pellegrini ◽  
Azadeh Ziaee Lorzad

ABSTRACT Recently, two-component spherical galaxy models have been presented, where the stellar profile is described by a Jaffe law, and the total density by another Jaffe law, or by an r−3 law at large radii. We extend these two families to their ellipsoidal axisymmetric counterparts: the JJe and J3e models. The total and stellar density distributions can have different flattenings and scale lengths, and the dark matter halo is defined by difference. First, the analytical conditions required to have a nowhere negative dark matter halo density are derived. The Jeans equations for the stellar component are then solved analytically, in the limit of small flattenings, also in the presence of a central BH. The azimuthal velocity dispersion anisotropy is described by the Satoh k-decomposition. Finally, we present the analytical formulae for velocity fields near the centre and at large radii, together with the various terms entering the virial theorem. The JJe and J3e models can be useful in a number of theoretical applications, e.g. to explore the role of the various parameters (flattening, relative scale lengths, mass ratios, rotational support) in determining the behaviour of the stellar kinematical fields before performing more time-expensive integrations with specific galaxy models, to test codes of stellar dynamics and in numerical simulations of gas flows in galaxies.


Sign in / Sign up

Export Citation Format

Share Document