Nordic Pulp & Paper Research Journal
Latest Publications


TOTAL DOCUMENTS

2269
(FIVE YEARS 207)

H-INDEX

39
(FIVE YEARS 4)

Published By Walter De Gruyter Gmbh

2000-0669, 0283-2631

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Karoliina Helanto ◽  
Riku Talja ◽  
Sai Li ◽  
Orlando J. Rojas

Abstract We study the incorporation of minerals (talc, kaolin and surface-treated calcium carbonate) in paperboard coatings based on PLA to improve their performance, often limited by the low crystallinity and moderate gas barrier of the polymer. Masterbatches of PLA-based blends mixed with the mineral fillers were melt-blended in a twin-screw extruder and applied as a coating on paperboard in a pilot-scale unit operating at velocities up to 140 m/min. Thermal imaging was used during the extrusion coating and the effect of the fillers was investigated as far as processability and their effect on the mechanical performance. A reduction of neck-in and improved adhesion between the coating and the substrate were achieved at intermediate mineral loadings. Excess filler and low coating weight generated pinholes, leading to a reduction of the integrity and mechanical properties of the coatings. Overall, we define the performance window for continuous, pilot-scale coating of paperboard with a biopolyester filled with mineral particles, opening the opportunity to realize operations in industrial settings.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Zafer Özomay ◽  
Çağla Koşak Söz ◽  
Sinan Sönmez

Abstract In this study the prints were made on paper substrates, which were thought as map substrate alternatives, with 3 different surface properties at 1200 dpi by using the electrophotographic printing system. Color and gloss values of the samples were determined both before and after exposure to light for a period of 42 hours to determine the light fastness of the substrate and the print on it. The studies revealed that after the light fastness tests (i) the width of the color universe of the papers with matte surfaces is more than that of the papers with glossy surfaces, (ii) the loss of brightness of woodfree paper is higher than that of the other paper samples and (iii) the print chroma values obtained in woodfree paper is lower than those of the coated surfaces. Moreover, (iv) the delta E 00 {E_{00}} measurements revealed that all paper samples experienced different color losses in different colors, and the most significant differences in these color losses were in magenta and black.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Thiago Moreira Cruz ◽  
Adriano Reis Prazeres Mascarenhas ◽  
Mário Vanoli Scatolino ◽  
Douglas Lamounier Faria ◽  
Lays Camila Matos ◽  
...  

Abstract The accumulation of petroleum polymers compromises biodiversity and causes environmental problems. Nanocellulose enhances biodegradability and can improve the physical-mechanical performance of materials. The objective was to produce and characterize hybrid films composed of bacterial cellulose (BC) and plant nanocellulose from Eucalyptus (Euc) or Pinus (Pin). Films were produced by the casting method using filmogenic suspensions with different cellulose nanofibrils (CNFs) proportions from both the sources (0, 25, 50, 75 and 100 %). CNFs suspensions were characterized by transmission electron microscopy. The morphology of the films was analyzed using scanning electron microscopy. In addition, the transparency, contact angle, wettability, oil and water vapor barrier and mechanical properties were also evaluated. The contact angles were smaller for films with BC and the wettability was greater when comparing BC with plant CNFs (0.10 °  s − 1 {\text{s}^{-1}} for 75 % Euc/25 % BC and 0.20 °  s − 1 {\text{s}^{-1}} for 25 % Euc/75 % BC). The water vapor permeability (WVP) of the 100 % BC films and the 25 % Euc/75 % BC composition were the highest among the studied compositions. Tensile strength, Young’s modulus and puncture strength decreased considerably with the addition of BC in the films. More studies regarding pre-treatments to purify BC are needed to improve the mechanical properties of the films.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
D. Mandlez ◽  
R. Eckhart ◽  
W. Bauer

Abstract The application of a bench scale and an industrial scale pressure screen to separate cellulosic fines from an unbleached softwood kraft pulp containing 5 % (w/w) primary fines was investigated and the results were compared. In the bench scale trials different microperforated screens with hole diameters of 150 µm, 250 µm, 400 µm and 600 µm were used. Based on these results a screen hole diameter of 400 µm was selected for the industrial scale trials. In all cases, a high accept flow rate proved to be the crucial parameter for high removal efficiency of the fines material and a removal efficiency of well above 50 % could be achieved. Further of interest were the limiting factors regarding increased accept flow rates with a focus on the interrelations between pressure difference, slot velocity and reject consistency. As expected, investigation of electric energy demand showed a correlation between removal efficiency and specific energy consumption, which did not exceed 35 kWh/t(od) feed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Cheol Woo Lee ◽  
Jeong Yong Ryu

Abstract A more efficient application of a dry strength agent (DSA) was investigated to improve the strength of thermomechanical pulp (TMP) blended paper. Strength improvement by DSA application was more effective for hardwood bleached kraft pulp (Hw-BKP) than TMP. The degree of strength improvement of DSA further increased with the increasing degree of refining of Hw-BKP. The strength of the paper was decreased by the fines fractionation of TMP, but the strength improvement efficiency of DSA for the fines fractionated TMP increased. In order to increase the strength of TMP mixed paper using DSA, it is expected that DSA should be adsorbed only to Hw-BKP with high strength improvement efficiency, not TMP fines. When the DSA was mixed with Hw-BKP before contact with other stocks, it was confirmed that the effect of improving the strength by the DSA is the best. The strength improving effect increased as TMP fines were removed. Therefore, to improve the strength of the paper containing TMP in Hw-BKP by adding a DSA, it is preferable to selective apply the DSA to Hw-BKP while blending only the fibers of TMP by fractionation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hailiang Yang ◽  
Hailing Zheng ◽  
Yang Zhou

Abstract Precious organic cultural relics are easily affected by temperature, humidity, and harmful gases in the environment, resulting in embrittlement, fading, mildew, moth damage and other aging forms. An energy-saving and environmentally friendly material is needed to stabilize humidity and adsorb harmful gases in the environment. In this paper, with an intelligent adjustment function, functional paper containing sepiolite and tourmaline natural minerals was successfully prepared. The component of 80 % of wingceltis and 20 % of straw in dry pulp as main raw material was conducive to the desorption of water molecules. As favorable structure inside functional paper, the adsorption point and the adsorption contact area increased by the rough surface of fiber bundles, the addition of sepiolite and the ordered molecular chains of copolymers destroyed. So, the relative humidity could be adjusted to 55 % ± 3 within 2 hours and was stable with functional paper. At the same time, 1.11 ppm sulfur dioxide and 2.98 ppm ammonia could be effectively adsorbed in 10 and 12 h, respectively, by 1 g of paper in a 5 L container. The pH of the paper was adjusted to neutral with tourmaline, even if the pH was changed by acidic or alkaline gas absorption. Therefore, for long-term organic cultural relic preservation, preparing a constant-humidity and clean environment is of great significance. This is possible through this paper.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Matthias Aigner ◽  
James Olson ◽  
Yu Sun ◽  
Peter Wild

Abstract A set of piezo electric force sensors is implemented in a 52-inch mill-scale low consistency refiner to explore the effect of refiner plate wear on bar force sensor measurements. The sensor replaces a short length of a stator bar and measures normal and shear forces applied during the passage of each rotor bar. In previous work with this type of force sensor, force profiles for individual bar passing events (BPE) were investigated. In the work presented here, force profiles for individual BPEs are identified based on key features in the time domain force data. The individual bar force profiles are classified as single peak events which feature one peak corresponding to the fiber compression force and as dual peak events corresponding to fiber compression force and the corner force. The bar passing events are then analysed, based on dual peak ratio and time to peak of the early peak in the dual peak events. Force measurements are evaluated over the full run time of a set of refiner plates. Findings are compared with refiner plate wear measurements and discharge fiber analysis. It is shown that the decrease in the prevalence of the corner force correlates with the wear of the leading edge of the refiner bars or bar rounding of the run time of the refiner plate. This is accompanied by a decrease in plate performance which is represented by a decrease in fiber length and freeness reduction for the same refiner load.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Claudia Anna Dohr ◽  
Ulrich Hirn

Abstract The effect of paper properties on the strength of starch gluing for Kraft sack papers has been investigated. We analyzed the effect of surface roughness, wettability and glue penetration. Surface roughness was found not to be related to gluing strength, also surface wetting measured by contact angle showed only a weak relation. Liquid penetration measured by ultrasound (ULP) was found to have a substantial correlation to gluing strength. Comparing ULP liquid penetration speed with actual glue uptake during the gluing process we found that they are only moderately connected. We are attributing this to the fact that the penetration and spreading of the glue on the paper is driven by applying an external pressure during the gluing process, which is not the case for the liquid penetration measurement. Investigating how asymmetrical glue penetration affects gluing strength we found that the relationship was low. The best indication for gluing strength turned out to be the surface wetting/substrate swelling parameter from the ultrasonic liquid penetration measurement. We conclude that the main parameter capturing gluing strength combines the influence of fiber wetting and penetration of the glue into the fibers.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jing Liu ◽  
Xin Jin ◽  
Haitang Liu ◽  
Yongzhen An ◽  
Jie Li ◽  
...  

Abstract In this investigation, softwood pulp and bleached wheat straw pulp were used as raw materials, and Calcium Sulfate Whiskers (CSW) were used as fillers. Based on the structural properties and characteristics of CSW, the printing properties of the paper with CSW, such as whiteness, opacity, pH value, uniformity, Z-direction tensile strength and surface strength, were analyzed. The results showed that CSW has low solubility, high retention and fiber-like appearance. The whiteness of the paper is the best when the filling amount of CSW is 20 %. The paper opacity of softwood pulp increases significantly, and the opacity of bleached wheat straw pulp decreases significantly when CSW is more than 30 %. The addition reduces pH and surface strength of the paper. The evenness of the paper does not change obviously. The Z-direction tensile strength of the paper decreases in the softwood paper, but increases obviously in the bleached wheat straw paper.


Sign in / Sign up

Export Citation Format

Share Document