stellar component
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 42)

H-INDEX

17
(FIVE YEARS 5)

2021 ◽  
Vol 5 (12) ◽  
pp. 285
Author(s):  
Lindsey Boyle ◽  
Manfred Cuntz

Abstract In this study we investigate aspects of orbital stability for the Alpha Centauri and 16 Cygni systems. They are planet-hosting triple star systems of highly hierarchic nature. For each system, orbital stability of the outlying stellar component and the observed exoplanet(s) are explored through assessing Hill stability. Orbital stability is identified for all components, including the observed system planets.


2021 ◽  
Vol 2021 (11) ◽  
pp. 033
Author(s):  
Nestor Mirabal ◽  
Ana Bonaca

Abstract The detection of dark matter subhalos without a stellar component in the Galactic halo remains a challenge. We use supervised machine learning to identify high-latitude gamma-ray sources with dark matter-like spectra among unassociated gamma-ray sources in the 4FGL-DR2. Out of 843 4FGL-DR2 unassociated sources at |b| ≥ 10°, we select 73 dark matter subhalo candidates. Of the 69 covered by the Neil Gehrels Swift Observatory (Swift), 17 show at least one X-ray source within the 95% LAT error ellipse and 52 where we identify no new sources. This latest inventory of dark subhalos candidates allows us to investigate the possible dark matter substructure responsible for the perturbation in the GD-1 stellar stream. In particular, we examine the possibility that the alleged GD-1 dark subhalo may appear as a 4FGL-DR2 gamma-ray source from dark matter annihilation into Standard Model particles.


2021 ◽  
Vol 508 (1) ◽  
pp. 352-370
Author(s):  
Florent Renaud ◽  
Alessandro B Romeo ◽  
Oscar Agertz

ABSTRACT The morphology of gas-rich disc galaxies at redshift $\sim 1\!-\!3$ is dominated by a few massive clumps. The process of formation or assembly of these clumps and their relation to molecular clouds in contemporary spiral galaxies are still unknown. Using simulations of isolated disc galaxies, we study how the structure of the interstellar medium and the stability regime of the discs change when varying the gas fraction. In all galaxies, the stellar component is the main driver of instabilities. However, the molecular gas plays a non-negligible role in the interclump medium of gas-rich cases, and thus in the assembly of the massive clumps. At scales smaller than a few 100 pc, the Toomre-like disc instabilities are replaced by another regime, especially in the gas-rich galaxies. We find that galaxies at low gas fraction (10 per cent) stand apart from discs with more gas, which all share similar properties in virtually all aspects we explore. For gas fractions below $\approx 20{{\ \rm per\ cent}}$, the clump-scale regime of instabilities disappears, leaving only the large-scale disc-driven regime. Associating the change of gas fraction to the cosmic evolution of galaxies, this transition marks the end of the clumpy phase of disc galaxies, and allows for the onset of spiral structures, as commonly found in the local Universe.


Author(s):  
C R Mulcahey ◽  
L J Prichard ◽  
D Krajnović ◽  
R A Jorgenson

Abstract IC 1459 is an early-type galaxy (ETG) with a rapidly counter-rotating stellar core, and is the central galaxy in a gas-rich group of spirals. In this work, we investigate the abundant ionized gas in IC 1459 and present new stellar orbital models to connect its complex array of observed properties and build a more complete picture of its evolution. Using the Multi-Unit Spectroscopic Explorer (MUSE), the optical integral field unit (IFU) on the Very Large Telescope (VLT), we examine the gas and stellar properties of IC 1459 to decipher the origin and powering mechanism of the galaxy’s ionized gas. We detect ionized gas in a non-disk-like structure rotating in the opposite sense to the central stars. Using emission-line flux ratios and velocity dispersion from full-spectral fitting, we find two kinematically distinct regions of shocked emission-line gas in IC 1459, which we distinguished using narrow (σ ≤ 155 km s−1) and broad (σ > 155 km s−1) profiles. Our results imply that the emission-line gas in IC 1459 has a different origin than that of its counter-rotating stellar component. We propose that the ionized gas is from late-stage accretion of gas from the group environment, which occurred long after the formation of the central stellar component. We find that shock heating and AGN activity are both ionizing mechanisms in IC 1459 but that the dominant excitation mechanism is by post-asymptotic giant branch stars from its old stellar population.


2021 ◽  
Vol 503 (3) ◽  
pp. 3568-3591
Author(s):  
Sophie Koudmani ◽  
Nicholas A Henden ◽  
Debora Sijacki

ABSTRACT Contrary to the standard lore, there is mounting observational evidence that feedback from active galactic nuclei (AGN) may also play a role at the low-mass end of the galaxy population. We investigate this using the cosmological simulation suite fable, with a particular focus on the dwarf regime (Mstellar < 109.5 M⊙). We find that overmassive black holes (BHs), with respect to the mean scaling relations with their host galaxies, drive hotter and faster outflows and lead to significantly reduced gas mass fractions. They are also more likely to display a kinematically misaligned ionized gas component in our mock MaNGA velocity maps, although we caution that cosmic inflows and mergers contribute to misalignments as well. While in the local Universe the majority of AGN in dwarfs are much dimmer than the stellar component, for z ≥ 2 there is a significant population that outshines their hosts. These high-redshift overmassive BHs contribute to the quenching of dwarfs, whereas at late cosmic times supernova (SN) feedback is more efficient. While our results are overall in good agreement with X-ray observations of AGN in dwarfs, the lack of high-luminosity X-ray AGN in fable at low redshifts highlights an interesting possibility that SN feedback could be too strong in fable’s dwarfs, curtailing AGN growth and feedback. We predict that future observations may uncover many more AGN in dwarfs with lower luminosities and at higher redshifts.


Author(s):  
Ananth Tenneti ◽  
Thomas D Kitching ◽  
Benjamin Joachimi ◽  
Tiziana Di Matteo

Abstract We study the alignments of satellite galaxies, and their anisotropic distribution, with respect to location and orientation of their host central galaxy in MassiveBlack-II and IllustrisTNG simulations. We find that: the shape of the satellite system in halos of mass (>1013h−1M⊙) is well aligned with the shape of the central galaxy at z = 0.06 with the mean alignment between the major axes being ∼Δθ = 12○ when compared to a uniform random distribution; that satellite galaxies tend to be anisotropically distributed along the major axis of the central galaxy with a stronger alignment in halos of higher mass or luminosity; and that the satellite distribution is more anisotropic for central galaxies with lower star formation rate, which are spheroidal, and for red central galaxies. Radially we find that satellites tend to be distributed along the major axis of the shape of the stellar component of central galaxies at smaller scales and the dark matter component on larger scales. We find that the dependence of satellite anisotropy on central galaxy properties and the radial distance is similar in both the simulations with a larger amplitude in MassiveBlack-II. The orientation of satellite galaxies tends to point toward the location of the central galaxy at small scales and this correlation decreases with increasing distance, and the amplitude of satellite alignment is higher in high mass halos. However, the projected ellipticities do not exhibit a scale-dependent radial alignment, as has been seen in some observational measurements.


2020 ◽  
Vol 500 (1) ◽  
pp. 1054-1070
Author(s):  
Luca Ciotti ◽  
Antonio Mancino ◽  
Silvia Pellegrini ◽  
Azadeh Ziaee Lorzad

ABSTRACT Recently, two-component spherical galaxy models have been presented, where the stellar profile is described by a Jaffe law, and the total density by another Jaffe law, or by an r−3 law at large radii. We extend these two families to their ellipsoidal axisymmetric counterparts: the JJe and J3e models. The total and stellar density distributions can have different flattenings and scale lengths, and the dark matter halo is defined by difference. First, the analytical conditions required to have a nowhere negative dark matter halo density are derived. The Jeans equations for the stellar component are then solved analytically, in the limit of small flattenings, also in the presence of a central BH. The azimuthal velocity dispersion anisotropy is described by the Satoh k-decomposition. Finally, we present the analytical formulae for velocity fields near the centre and at large radii, together with the various terms entering the virial theorem. The JJe and J3e models can be useful in a number of theoretical applications, e.g. to explore the role of the various parameters (flattening, relative scale lengths, mass ratios, rotational support) in determining the behaviour of the stellar kinematical fields before performing more time-expensive integrations with specific galaxy models, to test codes of stellar dynamics and in numerical simulations of gas flows in galaxies.


2020 ◽  
Author(s):  
Arnaud Roisin ◽  
Anne-Sophie Libert

<p>About half of the Sun-like stars are part of multiple-star systems. To date more than 100 planets are known moving around one stellar component of a binary star (S-type planets), with diverse eccentricities. These discoveries raise the question of their formation and long-term evolution, since the stellar companion can strongly affect the planet formation process. Here we study the dynamical influence of a wide binary companion on the (Type-II) migration of a single giant planet in the protoplanetary disk. Using a modified version of an N-body integrator adapted for binary star systems and adopting eccentricity and inclination damping formulae (derived from hydrodynamical simulations) to properly model the influence of the disk, we carried out more than 3500 numerical simulations with different initial configurations and study the dynamics of the systems up to 100 Myr. Particular attention is paid to the Lidov-Kozai resonance whose role is determinant for the evolution of the giant planet, although initially embedded in the disk, when the stellar companion is highly inclined. We highlight the high probability for the planet of experiencing, during the disk phase, a scattering event or an ejection due to the presence of the binary companion. We also show that a capture of the migrating planet in the Lidov-Kozai resonance is far from being automatic even when the binary companion is highly inclined, since only 10% of the systems actually end up in the resonance. Nevertheless, using a simplified quadrupolar hamiltonian approach, we point out that, for highly inclined binary companions, the dynamical evolutions are strongly affected by the Lidov-Kozai resonance islands, which create the pile-ups observed around – but not centred on – the pericenter values of 90° and 270° in the final distribution of the giant planets. The influence of the self-gravity of the disk on the previous results is finally discussed.</p>


2020 ◽  
Vol 642 ◽  
pp. A124
Author(s):  
A. Trudeau ◽  
C. Garrel ◽  
J. Willis ◽  
M. Pierre ◽  
F. Gastaldello ◽  
...  

Context. Distant galaxy clusters provide an effective laboratory in which to study galaxy evolution in dense environments and at early cosmic times. Aims. We aim to identify distant galaxy clusters as extended X-ray sources that are coincident with overdensities of characteristically bright galaxies. Methods. We used optical and near-infrared data from the Hyper Suprime-Cam and VISTA Deep Extragalactic Observations (VIDEO) surveys to identify distant galaxy clusters as overdensities of bright, zphot ≥ 0.8 galaxies associated with extended X-ray sources detected in the ultimate XMM extragalactic survey (XXL). Results. We identify a sample of 35 candidate clusters at 0.80 ≤ z ≤ 1.93 from an approximately 4.5 deg2 sky area. This sample includes 15 newly discovered candidate clusters, ten previously detected but unconfirmed clusters, and ten spectroscopically confirmed clusters. Although these clusters host galaxy populations that display a wide variety of quenching levels, they exhibit well-defined relations between quenching, cluster-centric distance, and galaxy luminosity. The brightest cluster galaxies (BCGs) within our sample display colours that are consistent with a bimodal population composed of an old and red sub-sample together with a bluer, more diverse sub-sample. Conclusions The relation between galaxy masses and quenching seem to already be in place at z ∼ 1, although there is no significant variation in the quenching fraction with the cluster-centric radius. The BCG bimodality might be explained by the presence of a younger stellar component in some BCGs, but additional data are needed to confirm this scenario.


2020 ◽  
Vol 499 (1) ◽  
pp. 116-128
Author(s):  
Jeremy J Webb ◽  
Jo Bovy

ABSTRACT We compare the results of high-resolution simulations of individual dark matter subhaloes evolving in external tidal fields with and without baryonic bulge and disc components, where the average dark matter particle mass is three orders of magnitude smaller than cosmological zoom-in simulations of galaxy formation. The Via Lactea II simulation is used to setup our initial conditions and provides a basis for our simulations of subhaloes in a dark-matter-only tidal field, while an observationally motivated model for the Milky-Way is used for the tidal field that is comprised of a dark matter halo, a stellar disc, and a stellar bulge. Our simulations indicate that including stellar components in the tidal field results in the number of subhaloes in Milky-Way-like galaxies being only $65{{\ \rm per\ cent}}$ of what is predicted by Λ cold dark matter (ΛCDM). For subhaloes with small pericentres (rp ≲ 25 kpc), the subhalo abundance is reduced further to $40{{\ \rm per\ cent}}$, with the surviving subhaloes being less dense and having a tangentially anisotropic orbital distribution. Conversely, subhaloes with larger pericentres are minimally affected by the inclusion of a stellar component in the tidal field, with the total number of outer subhaloes $\approx 75{{\ \rm per\ cent}}$ of the ΛCDM prediction. The densities of outer subhaloes are comparable to predictions from ΛCDM, with the subhaloes having an isotropic distribution of orbits. These ratios are higher than those found in previous studies that include the effects baryonic matter, which are affected by spurious disruption caused by low resolution.


Sign in / Sign up

Export Citation Format

Share Document