Bose–Einstein condensation and heat capacity of spin-polarized atomic hydrogen

2010 ◽  
Vol 405 (9) ◽  
pp. 2171-2174 ◽  
Author(s):  
M.K. Al-Sugheir ◽  
A.S. Sandouqa ◽  
B.R. Joudeh ◽  
S. Al-Omari ◽  
M. Awawdeh ◽  
...  
2019 ◽  
Vol 33 (26) ◽  
pp. 1950311
Author(s):  
L. A. García ◽  
M. de Llano

The new generalized Bose–Einstein condensation (GBEC) quantum-statistical theory starts from a noninteracting ternary boson-fermion (BF) gas of two-hole Cooper pairs (2hCPs) along with the usual two-electron Cooper pairs (2eCPs) plus unpaired electrons. Here we obtain the entropy and heat capacity and confirm once again that GBEC contains as a special case the Bardeen–Cooper–Schrieffer (BCS) theory. The energy gap is first calculated and compared with that of BCS theory for different values of a new dimensionless coupling parameter n/n[Formula: see text] where n is the total electron number density and n[Formula: see text] that of unpaired electrons at zero absolute temperature. Then, from the entropy, the heat capacity is calculated. Results compare well with elemental-superconductor data suggesting that 2hCPs are indispensable to describe superconductors (SCs).


1998 ◽  
Vol 81 (18) ◽  
pp. 3811-3814 ◽  
Author(s):  
Dale G. Fried ◽  
Thomas C. Killian ◽  
Lorenz Willmann ◽  
David Landhuis ◽  
Stephen C. Moss ◽  
...  

2003 ◽  
Vol 10 (02) ◽  
pp. 135-145 ◽  
Author(s):  
Guozhen Su ◽  
Lixuan Chen ◽  
Jincan Chen

The thermodynamic properties of an ideal q-boson gas trapped in an n-dimensional harmonic potential are studied, based on the distribution function of q-bosons. The critical temperature Tc,q of Bose-Einstein condensation (BEC) and the heat capacity C of the system are derived analytically. It is shown that for the q-boson gas trapped in a harmonic potential, BEC may occur in any dimension when q ≠ 1, the critical temperature is always higher than that of an ordinary Bose gas (q = 1), and the heat capacity is continuous at Tc,q for a one-dimensional system but discontinuous at Tc,q for a two- or multi-dimensional system.


2014 ◽  
Vol 90 (4) ◽  
Author(s):  
R. F. Shiozaki ◽  
G. D. Telles ◽  
P. Castilho ◽  
F. J. Poveda-Cuevas ◽  
S. R. Muniz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document