Entropy and heat capacity in the generalized Bose–Einstein condensation theory of superconductors

2019 ◽  
Vol 33 (26) ◽  
pp. 1950311
Author(s):  
L. A. García ◽  
M. de Llano

The new generalized Bose–Einstein condensation (GBEC) quantum-statistical theory starts from a noninteracting ternary boson-fermion (BF) gas of two-hole Cooper pairs (2hCPs) along with the usual two-electron Cooper pairs (2eCPs) plus unpaired electrons. Here we obtain the entropy and heat capacity and confirm once again that GBEC contains as a special case the Bardeen–Cooper–Schrieffer (BCS) theory. The energy gap is first calculated and compared with that of BCS theory for different values of a new dimensionless coupling parameter n/n[Formula: see text] where n is the total electron number density and n[Formula: see text] that of unpaired electrons at zero absolute temperature. Then, from the entropy, the heat capacity is calculated. Results compare well with elemental-superconductor data suggesting that 2hCPs are indispensable to describe superconductors (SCs).

2010 ◽  
Vol 24 (25n26) ◽  
pp. 5163-5171
Author(s):  
MANUEL de LLANO

Unification of the BCS and the Bose-Einstein condensation (BEC) theories is surveyed in detail via a generalized BEC (GBEC) finite-temperature statistical formalism. Its major difference with BCS theory is that it can be diagonalized exactly. Under specified conditions it yields the precise BCS gap equation for all temperatures as well as the precise BCS zero-temperature condensation energy for all couplings, thereby suggesting that a BCS condensate is a BE condensate in a ternary mixture of kinematically independent unpaired electrons coexisting with equally proportioned weakly-bound two-electron and two-hole Cooper pairs. Without abandoning the electron-phonon mechanism in moderately weak coupling it suffices, in principle, to reproduce the unusually high values of Tc (in units of the Fermi temperature TF) of 0.01-0.05 empirically reported in the so-called "exotic" superconductors of the Uemura plot, including cuprates, in contrast to the low values of Tc/TF ≤ 10-3 roughly reproduced by BCS theory for conventional (mostly elemental) superconductors. Replacing the characteristic phonon-exchange Debye temperature by a characteristic magnon-exchange one more than twice in size can lead to a simple interaction model associated with spin-fluctuation-mediated pairing.


Author(s):  
Klaus Morawetz

The Bose–Einstein condensation and appearance of superfluidity and superconductivity are introduced from basic phenomena. A systematic theory based on the asymmetric expansion of chapter 11 is shown to correct the T-matrix from unphysical multiple-scattering events. The resulting generalised Soven scheme provides the Beliaev equations for Boson’s and the Nambu–Gorkov equations for fermions without the usage of anomalous and non-conserving propagators. This systematic theory allows calculating the fluctuations above and below the critical parameters. Gap equations and Bogoliubov–DeGennes equations are derived from this theory. Interacting Bose systems with finite temperatures are discussed with successively better approximations ranging from Bogoliubov and Popov up to corrected T-matrices. For superconductivity, the asymmetric theory leading to the corrected T-matrix allows for establishing the stability of the condensate and decides correctly about the pair-breaking mechanisms in contrast to conventional approaches. The relation between the correlated density from nonlocal kinetic theory and the density of Cooper pairs is shown.


2010 ◽  
Vol 405 (9) ◽  
pp. 2171-2174 ◽  
Author(s):  
M.K. Al-Sugheir ◽  
A.S. Sandouqa ◽  
B.R. Joudeh ◽  
S. Al-Omari ◽  
M. Awawdeh ◽  
...  

2003 ◽  
Vol 17 (18n20) ◽  
pp. 3304-3309
Author(s):  
V. C. Aguilera-Navarro ◽  
M. Fortes ◽  
M. de Llano

A Bethe–Salpeter treatment of Cooper pairs (CPs) based on an ideal Fermi gas (IFG) "sea" produces unstable CPs if holes are not ignored. Stable CPs with damping emerge when the BCS ground state replaces the IFG, and are positive-energy, finite-lifetime resonances for nonzero center-of-mass momentum with a linear dispersion leading term. Bose–Einstein condensation of such pairs may thus occur in exactly two dimensions as it cannot with quadratic dispersion.


2008 ◽  
Vol 22 (25n26) ◽  
pp. 4367-4378 ◽  
Author(s):  
M. GRETHER ◽  
M. de LLANO ◽  
S. RAMÍREZ ◽  
O. ROJO

The role in superconductors of hole-Cooper-pairs (CPs) are examined and contrasted with the more familiar electron-CPs, with special emphasis on their “background” effect in enhancing superconducting transition temperatures Tc — even when electron-CPs drive the transition. Both kinds of CPs are, of course, present at all temperatures. An analogy is drawn between the hole CPs in any many-fermion system with the antibosons in a relativistic ideal Bose gas that appear in substantial numbers only at higher and higher temperatures. Their indispensable role in yielding a lower Helmholtz free energy equilibrium state is established. For superconductors, the problem is viewed in terms of a generalized Bose-Einstein condensation (GBEC) theory that is an extension of the Friedberg-T.D. Lee 1989 boson-fermion BEC theory of high-Tc superconductors in that the GBEC theory includes hole CPs as well as electron-CPs — thereby containing as well as further extending BCS theory to higher temperatures with the same weak-coupling electron-phonon interaction parameters. We show that the Helmholtz free energy of both 2e- and 2h-CP pure condensates has a positive second derivative, and are thus stable equilibrium states. Finally, it is conjectured that the role of hole pairs in ultra-cold fermionic atom gases will likely be negligible because the very low densities involved imply a “shallow” Fermi sea.


Sign in / Sign up

Export Citation Format

Share Document