Exponential synchronization of complex delayed dynamical networks via pinning periodically intermittent control

2011 ◽  
Vol 375 (19) ◽  
pp. 1965-1971 ◽  
Author(s):  
Shuiming Cai ◽  
Junjun Hao ◽  
Qinbin He ◽  
Zengrong Liu
2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Xueliang Liu ◽  
Shengbing Xu

This paper investigates the exponential synchronization problem of delayed coupled dynamical networks by using adaptive pinning periodically intermittent control. Based on the Lyapunov method, by designing adaptive feedback controller, some sufficient conditions are presented to ensure the exponential synchronization of coupled dynamical networks with delayed coupling. Furthermore, a numerical example is given to demonstrate the validity of the theoretical results.


Author(s):  
Qing Ding ◽  
Yinfang Song

This paper deals with the exponential synchronization problem of inertial Cohen–Grossberg neural networks with time-varying delays under periodically intermittent control. In light of Lyapunov–Krasovskii functional method and inequality techniques, some sufficient conditions are attained to ensure the exponential synchronization of the master-slave system on the basis of p-norm. Meanwhile, the periodically intermittent control schemes are designed. Finally, in order to verify the effectiveness of theoretical results, some numerical simulations are provided.


Sign in / Sign up

Export Citation Format

Share Document